Model save
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value:
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,30 +32,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy:
|
37 |
|
38 |
## Model description
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
obtaining the following notebook:
|
43 |
-
|
44 |
-
https://colab.research.google.com/drive/1KC6twirtsc7N1kmlwY3IQKVUmSuK7zlh?usp=sharing
|
45 |
-
|
46 |
-
The possible classified data are:
|
47 |
-
<ul>
|
48 |
-
<li>N: Normal beat</li>
|
49 |
-
<li>S: Supraventricular premature beat</li>
|
50 |
-
<li>V: Premature ventricular contraction</li>
|
51 |
-
<li>F: Fusion of ventricular and normal beat</li>
|
52 |
-
<li>Q: Unclassifiable beat</li>
|
53 |
-
<li>M: myocardial infarction</li>
|
54 |
-
</ul>
|
55 |
-
|
56 |
-
### ECG example:
|
57 |
-
|
58 |
-
![Screenshot](N1.png)
|
59 |
|
60 |
## Intended uses & limitations
|
61 |
|
@@ -85,12 +67,12 @@ The following hyperparameters were used during training:
|
|
85 |
|
86 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
87 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
88 |
-
| 0.
|
89 |
|
90 |
|
91 |
### Framework versions
|
92 |
|
93 |
-
- Transformers 4.
|
94 |
-
- Pytorch 2.0
|
95 |
-
- Datasets 2.
|
96 |
-
- Tokenizers 0.
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.6985040276179517
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7308
|
36 |
+
- Accuracy: 0.6985
|
37 |
|
38 |
## Model description
|
39 |
|
40 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
## Intended uses & limitations
|
43 |
|
|
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.7715 | 1.0 | 183 | 0.7308 | 0.6985 |
|
71 |
|
72 |
|
73 |
### Framework versions
|
74 |
|
75 |
+
- Transformers 4.35.2
|
76 |
+
- Pytorch 2.1.0+cu121
|
77 |
+
- Datasets 2.16.1
|
78 |
+
- Tokenizers 0.15.0
|
all_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 1.0,
|
3 |
-
"eval_accuracy":
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 1.0,
|
3 |
+
"eval_accuracy": 0.6985040276179517,
|
4 |
+
"eval_loss": 0.7308106422424316,
|
5 |
+
"eval_runtime": 65.3069,
|
6 |
+
"eval_samples_per_second": 39.919,
|
7 |
+
"eval_steps_per_second": 1.256
|
8 |
}
|
eval_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 1.0,
|
3 |
-
"eval_accuracy":
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 1.0,
|
3 |
+
"eval_accuracy": 0.6985040276179517,
|
4 |
+
"eval_loss": 0.7308106422424316,
|
5 |
+
"eval_runtime": 65.3069,
|
6 |
+
"eval_samples_per_second": 39.919,
|
7 |
+
"eval_steps_per_second": 1.256
|
8 |
}
|
runs/Jan15_05-27-24_754e893eb757/events.out.tfevents.1705297400.754e893eb757.393.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d586d6aad65e55b48b92a2c4ca524fb66ccb0f12143fdc674bf0f8b6fb97863a
|
3 |
+
size 411
|