Commit
•
0495e49
0
Parent(s):
init
Browse files- .gitattributes +36 -0
- .gitignore +3 -0
- README.md +11 -0
- config.json +29 -0
- data.txt +14 -0
- finetune.ipynb +151 -0
- generate_moe.ipynb +328 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- model_original.safetensors +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +32 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gguf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.ipynb_checkpoints
|
2 |
+
wandb
|
3 |
+
|
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
# stories15M_MOE
|
6 |
+
|
7 |
+
This model is [ModelCloud/tinyllama-15M-stories](https://huggingface.co/ModelCloud/tinyllama-15M-stories) repeated 4 times to make 4 experts.
|
8 |
+
|
9 |
+
The model is used for testing, not intended to be used in production (unless your product is some kind of bedtime story teller)
|
10 |
+
|
11 |
+
Weight of router is initialized randomly
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MixtralForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 288,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 768,
|
12 |
+
"max_position_embeddings": 256,
|
13 |
+
"model_type": "mixtral",
|
14 |
+
"num_attention_heads": 6,
|
15 |
+
"num_experts_per_tok": 2,
|
16 |
+
"num_hidden_layers": 6,
|
17 |
+
"num_key_value_heads": 6,
|
18 |
+
"num_local_experts": 4,
|
19 |
+
"output_router_logits": false,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"router_aux_loss_coef": 0.02,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.36.0.dev0",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
data.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
From fairest creatures we desire increase,
|
2 |
+
That thereby beauty's rose might never die,
|
3 |
+
But as the riper should by time decease,
|
4 |
+
His tender heir might bear his memory:
|
5 |
+
But thou contracted to thine own bright eyes,
|
6 |
+
Feed'st thy light's flame with self-substantial fuel,
|
7 |
+
Making a famine where abundance lies,
|
8 |
+
Thy self thy foe, to thy sweet self too cruel:
|
9 |
+
Thou that art now the world's fresh ornament,
|
10 |
+
And only herald to the gaudy spring,
|
11 |
+
Within thine own bud buriest thy content,
|
12 |
+
And tender churl mak'st waste in niggarding:
|
13 |
+
Pity the world, or else this glutton be,
|
14 |
+
To eat the world's due, by the grave and thee.
|
finetune.ipynb
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "a41f141c-b6a8-40d1-b72d-127d028c0592",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
12 |
+
"\n",
|
13 |
+
"model_path = os.getcwd()\n",
|
14 |
+
"print(model_path)\n",
|
15 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_path, legacy=False)\n",
|
16 |
+
"model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=True, local_files_only=True)"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"id": "93e9ec6a-4a57-484f-a1a5-ecb6674e8f77",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"#inputs = tokenizer('', return_tensors=\"pt\")\n",
|
27 |
+
"#outputs = model.generate(inputs['input_ids'], max_new_tokens=20, temperature=0)\n",
|
28 |
+
"#print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": null,
|
34 |
+
"id": "e570b6db-efa8-4c9f-ac71-573479b00711",
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"model.gradient_checkpointing_enable()"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": null,
|
44 |
+
"id": "9345e74b-5bef-4cc9-982e-342af69b290a",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"from peft import LoraConfig\n",
|
49 |
+
"\n",
|
50 |
+
"config = LoraConfig(\n",
|
51 |
+
" r=32,\n",
|
52 |
+
" lora_alpha=64,\n",
|
53 |
+
" target_modules=[\n",
|
54 |
+
" \"q_proj\",\n",
|
55 |
+
" \"k_proj\",\n",
|
56 |
+
" \"v_proj\",\n",
|
57 |
+
" \"o_proj\",\n",
|
58 |
+
" \"w1\",\n",
|
59 |
+
" \"w2\",\n",
|
60 |
+
" \"w3\",\n",
|
61 |
+
" \"lm_head\",\n",
|
62 |
+
" ],\n",
|
63 |
+
" bias=\"none\",\n",
|
64 |
+
" lora_dropout=0.05, # Conventional\n",
|
65 |
+
" task_type=\"CAUSAL_LM\",\n",
|
66 |
+
")\n",
|
67 |
+
"\n",
|
68 |
+
"#print(model)"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"id": "09dd4848-9c7a-4a3b-9887-59652c915cc3",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"import transformers\n",
|
79 |
+
"from datetime import datetime\n",
|
80 |
+
"\n",
|
81 |
+
"project = \"moe_shakespeare15M\"\n",
|
82 |
+
"run_name = project\n",
|
83 |
+
"output_dir = \"./\" + run_name\n",
|
84 |
+
"\n",
|
85 |
+
"with open(\"data.txt\", \"r\") as f:\n",
|
86 |
+
" content = f.read()\n",
|
87 |
+
" tokenized_train_dataset = [\n",
|
88 |
+
" tokenizer(content)['input_ids']\n",
|
89 |
+
" ]\n",
|
90 |
+
"\n",
|
91 |
+
"trainer = transformers.Trainer(\n",
|
92 |
+
" model=model,\n",
|
93 |
+
" train_dataset=tokenized_train_dataset,\n",
|
94 |
+
" args=transformers.TrainingArguments(\n",
|
95 |
+
" output_dir=output_dir,\n",
|
96 |
+
" warmup_steps=10,\n",
|
97 |
+
" per_device_train_batch_size=2,\n",
|
98 |
+
" gradient_accumulation_steps=1,\n",
|
99 |
+
" gradient_checkpointing=True,\n",
|
100 |
+
" max_steps=300,\n",
|
101 |
+
" learning_rate=2.5e-5, # Want a small lr for finetuning\n",
|
102 |
+
" # fp16=True, \n",
|
103 |
+
" optim=\"paged_adamw_8bit\",\n",
|
104 |
+
" # logging_steps=25, # When to start reporting loss\n",
|
105 |
+
" # logging_dir=\"./logs\", # Directory for storing logs\n",
|
106 |
+
" save_strategy=\"steps\", # Save the model checkpoint every logging step\n",
|
107 |
+
" save_steps=50, # Save checkpoints every 50 steps\n",
|
108 |
+
" # evaluation_strategy=\"steps\", # Evaluate the model every logging step\n",
|
109 |
+
" # eval_steps=25, # Evaluate and save checkpoints every 50 steps\n",
|
110 |
+
" # do_eval=True, # Perform evaluation at the end of training\n",
|
111 |
+
" report_to=\"none\", # Comment this out if you don't want to use weights & baises\n",
|
112 |
+
" run_name=f\"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}\" # Name of the W&B run (optional)\n",
|
113 |
+
" ),\n",
|
114 |
+
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),\n",
|
115 |
+
")\n",
|
116 |
+
"\n",
|
117 |
+
"model.config.use_cache = False # silence the warnings. Please re-enable for inference!\n",
|
118 |
+
"trainer.train()"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": null,
|
124 |
+
"id": "7f0ad783-3f3e-4812-bc4e-026f9aad1435",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": []
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"metadata": {
|
131 |
+
"kernelspec": {
|
132 |
+
"display_name": "Python 3 (ipykernel)",
|
133 |
+
"language": "python",
|
134 |
+
"name": "python3"
|
135 |
+
},
|
136 |
+
"language_info": {
|
137 |
+
"codemirror_mode": {
|
138 |
+
"name": "ipython",
|
139 |
+
"version": 3
|
140 |
+
},
|
141 |
+
"file_extension": ".py",
|
142 |
+
"mimetype": "text/x-python",
|
143 |
+
"name": "python",
|
144 |
+
"nbconvert_exporter": "python",
|
145 |
+
"pygments_lexer": "ipython3",
|
146 |
+
"version": "3.10.12"
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"nbformat": 4,
|
150 |
+
"nbformat_minor": 5
|
151 |
+
}
|
generate_moe.ipynb
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"id": "66851a9c-d852-4a25-8cc7-1b7c03d1b3c2",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from safetensors.torch import load_file\n",
|
11 |
+
"import torch\n",
|
12 |
+
"\n",
|
13 |
+
"model = load_file(\"model_original.safetensors\", device=\"cpu\")"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 6,
|
19 |
+
"id": "6775e2ae-a543-401d-9f81-c450f3eb5910",
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"name": "stdout",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"model.embed_tokens.weight\n",
|
27 |
+
"model.layers.0.input_layernorm.weight\n",
|
28 |
+
"model.layers.0.mlp.down_proj.weight\n",
|
29 |
+
"model.layers.0.mlp.gate_proj.weight\n",
|
30 |
+
"model.layers.0.mlp.up_proj.weight\n",
|
31 |
+
"model.layers.0.post_attention_layernorm.weight\n",
|
32 |
+
"model.layers.0.self_attn.k_proj.weight\n",
|
33 |
+
"model.layers.0.self_attn.o_proj.weight\n",
|
34 |
+
"model.layers.0.self_attn.q_proj.weight\n",
|
35 |
+
"model.layers.0.self_attn.v_proj.weight\n",
|
36 |
+
"model.layers.1.input_layernorm.weight\n",
|
37 |
+
"model.layers.1.mlp.down_proj.weight\n",
|
38 |
+
"model.layers.1.mlp.gate_proj.weight\n",
|
39 |
+
"model.layers.1.mlp.up_proj.weight\n",
|
40 |
+
"model.layers.1.post_attention_layernorm.weight\n",
|
41 |
+
"model.layers.1.self_attn.k_proj.weight\n",
|
42 |
+
"model.layers.1.self_attn.o_proj.weight\n",
|
43 |
+
"model.layers.1.self_attn.q_proj.weight\n",
|
44 |
+
"model.layers.1.self_attn.v_proj.weight\n",
|
45 |
+
"model.layers.2.input_layernorm.weight\n",
|
46 |
+
"model.layers.2.mlp.down_proj.weight\n",
|
47 |
+
"model.layers.2.mlp.gate_proj.weight\n",
|
48 |
+
"model.layers.2.mlp.up_proj.weight\n",
|
49 |
+
"model.layers.2.post_attention_layernorm.weight\n",
|
50 |
+
"model.layers.2.self_attn.k_proj.weight\n",
|
51 |
+
"model.layers.2.self_attn.o_proj.weight\n",
|
52 |
+
"model.layers.2.self_attn.q_proj.weight\n",
|
53 |
+
"model.layers.2.self_attn.v_proj.weight\n",
|
54 |
+
"model.layers.3.input_layernorm.weight\n",
|
55 |
+
"model.layers.3.mlp.down_proj.weight\n",
|
56 |
+
"model.layers.3.mlp.gate_proj.weight\n",
|
57 |
+
"model.layers.3.mlp.up_proj.weight\n",
|
58 |
+
"model.layers.3.post_attention_layernorm.weight\n",
|
59 |
+
"model.layers.3.self_attn.k_proj.weight\n",
|
60 |
+
"model.layers.3.self_attn.o_proj.weight\n",
|
61 |
+
"model.layers.3.self_attn.q_proj.weight\n",
|
62 |
+
"model.layers.3.self_attn.v_proj.weight\n",
|
63 |
+
"model.layers.4.input_layernorm.weight\n",
|
64 |
+
"model.layers.4.mlp.down_proj.weight\n",
|
65 |
+
"model.layers.4.mlp.gate_proj.weight\n",
|
66 |
+
"model.layers.4.mlp.up_proj.weight\n",
|
67 |
+
"model.layers.4.post_attention_layernorm.weight\n",
|
68 |
+
"model.layers.4.self_attn.k_proj.weight\n",
|
69 |
+
"model.layers.4.self_attn.o_proj.weight\n",
|
70 |
+
"model.layers.4.self_attn.q_proj.weight\n",
|
71 |
+
"model.layers.4.self_attn.v_proj.weight\n",
|
72 |
+
"model.layers.5.input_layernorm.weight\n",
|
73 |
+
"model.layers.5.mlp.down_proj.weight\n",
|
74 |
+
"model.layers.5.mlp.gate_proj.weight\n",
|
75 |
+
"model.layers.5.mlp.up_proj.weight\n",
|
76 |
+
"model.layers.5.post_attention_layernorm.weight\n",
|
77 |
+
"model.layers.5.self_attn.k_proj.weight\n",
|
78 |
+
"model.layers.5.self_attn.o_proj.weight\n",
|
79 |
+
"model.layers.5.self_attn.q_proj.weight\n",
|
80 |
+
"model.layers.5.self_attn.v_proj.weight\n",
|
81 |
+
"model.norm.weight\n"
|
82 |
+
]
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"source": [
|
86 |
+
"for name, tensor in model.items():\n",
|
87 |
+
" print(name)"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": 25,
|
93 |
+
"id": "8b06f3c7-927d-4148-950c-5e1c93a54b75",
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"name": "stdout",
|
98 |
+
"output_type": "stream",
|
99 |
+
"text": [
|
100 |
+
"model.embed_tokens.weight torch.Size([32000, 288])\n",
|
101 |
+
"model.norm.weight torch.Size([288])\n",
|
102 |
+
"lm_head.weight torch.Size([32000, 288])\n",
|
103 |
+
"model.layers.0.input_layernorm.weight torch.Size([288])\n",
|
104 |
+
"model.layers.0.post_attention_layernorm.weight torch.Size([288])\n",
|
105 |
+
"model.layers.0.self_attn.k_proj.weight torch.Size([288, 288])\n",
|
106 |
+
"model.layers.0.self_attn.o_proj.weight torch.Size([288, 288])\n",
|
107 |
+
"model.layers.0.self_attn.q_proj.weight torch.Size([288, 288])\n",
|
108 |
+
"model.layers.0.self_attn.v_proj.weight torch.Size([288, 288])\n",
|
109 |
+
"model.layers.0.block_sparse_moe.gate.weight torch.Size([4, 288])\n",
|
110 |
+
"model.layers.0.block_sparse_moe.experts.0.w1.weight torch.Size([768, 288])\n",
|
111 |
+
"model.layers.0.block_sparse_moe.experts.0.w2.weight torch.Size([288, 768])\n",
|
112 |
+
"model.layers.0.block_sparse_moe.experts.0.w3.weight torch.Size([768, 288])\n",
|
113 |
+
"model.layers.0.block_sparse_moe.experts.1.w1.weight torch.Size([768, 288])\n",
|
114 |
+
"model.layers.0.block_sparse_moe.experts.1.w2.weight torch.Size([288, 768])\n",
|
115 |
+
"model.layers.0.block_sparse_moe.experts.1.w3.weight torch.Size([768, 288])\n",
|
116 |
+
"model.layers.0.block_sparse_moe.experts.2.w1.weight torch.Size([768, 288])\n",
|
117 |
+
"model.layers.0.block_sparse_moe.experts.2.w2.weight torch.Size([288, 768])\n",
|
118 |
+
"model.layers.0.block_sparse_moe.experts.2.w3.weight torch.Size([768, 288])\n",
|
119 |
+
"model.layers.0.block_sparse_moe.experts.3.w1.weight torch.Size([768, 288])\n",
|
120 |
+
"model.layers.0.block_sparse_moe.experts.3.w2.weight torch.Size([288, 768])\n",
|
121 |
+
"model.layers.0.block_sparse_moe.experts.3.w3.weight torch.Size([768, 288])\n",
|
122 |
+
"model.layers.1.input_layernorm.weight torch.Size([288])\n",
|
123 |
+
"model.layers.1.post_attention_layernorm.weight torch.Size([288])\n",
|
124 |
+
"model.layers.1.self_attn.k_proj.weight torch.Size([288, 288])\n",
|
125 |
+
"model.layers.1.self_attn.o_proj.weight torch.Size([288, 288])\n",
|
126 |
+
"model.layers.1.self_attn.q_proj.weight torch.Size([288, 288])\n",
|
127 |
+
"model.layers.1.self_attn.v_proj.weight torch.Size([288, 288])\n",
|
128 |
+
"model.layers.1.block_sparse_moe.gate.weight torch.Size([4, 288])\n",
|
129 |
+
"model.layers.1.block_sparse_moe.experts.0.w1.weight torch.Size([768, 288])\n",
|
130 |
+
"model.layers.1.block_sparse_moe.experts.0.w2.weight torch.Size([288, 768])\n",
|
131 |
+
"model.layers.1.block_sparse_moe.experts.0.w3.weight torch.Size([768, 288])\n",
|
132 |
+
"model.layers.1.block_sparse_moe.experts.1.w1.weight torch.Size([768, 288])\n",
|
133 |
+
"model.layers.1.block_sparse_moe.experts.1.w2.weight torch.Size([288, 768])\n",
|
134 |
+
"model.layers.1.block_sparse_moe.experts.1.w3.weight torch.Size([768, 288])\n",
|
135 |
+
"model.layers.1.block_sparse_moe.experts.2.w1.weight torch.Size([768, 288])\n",
|
136 |
+
"model.layers.1.block_sparse_moe.experts.2.w2.weight torch.Size([288, 768])\n",
|
137 |
+
"model.layers.1.block_sparse_moe.experts.2.w3.weight torch.Size([768, 288])\n",
|
138 |
+
"model.layers.1.block_sparse_moe.experts.3.w1.weight torch.Size([768, 288])\n",
|
139 |
+
"model.layers.1.block_sparse_moe.experts.3.w2.weight torch.Size([288, 768])\n",
|
140 |
+
"model.layers.1.block_sparse_moe.experts.3.w3.weight torch.Size([768, 288])\n",
|
141 |
+
"model.layers.2.input_layernorm.weight torch.Size([288])\n",
|
142 |
+
"model.layers.2.post_attention_layernorm.weight torch.Size([288])\n",
|
143 |
+
"model.layers.2.self_attn.k_proj.weight torch.Size([288, 288])\n",
|
144 |
+
"model.layers.2.self_attn.o_proj.weight torch.Size([288, 288])\n",
|
145 |
+
"model.layers.2.self_attn.q_proj.weight torch.Size([288, 288])\n",
|
146 |
+
"model.layers.2.self_attn.v_proj.weight torch.Size([288, 288])\n",
|
147 |
+
"model.layers.2.block_sparse_moe.gate.weight torch.Size([4, 288])\n",
|
148 |
+
"model.layers.2.block_sparse_moe.experts.0.w1.weight torch.Size([768, 288])\n",
|
149 |
+
"model.layers.2.block_sparse_moe.experts.0.w2.weight torch.Size([288, 768])\n",
|
150 |
+
"model.layers.2.block_sparse_moe.experts.0.w3.weight torch.Size([768, 288])\n",
|
151 |
+
"model.layers.2.block_sparse_moe.experts.1.w1.weight torch.Size([768, 288])\n",
|
152 |
+
"model.layers.2.block_sparse_moe.experts.1.w2.weight torch.Size([288, 768])\n",
|
153 |
+
"model.layers.2.block_sparse_moe.experts.1.w3.weight torch.Size([768, 288])\n",
|
154 |
+
"model.layers.2.block_sparse_moe.experts.2.w1.weight torch.Size([768, 288])\n",
|
155 |
+
"model.layers.2.block_sparse_moe.experts.2.w2.weight torch.Size([288, 768])\n",
|
156 |
+
"model.layers.2.block_sparse_moe.experts.2.w3.weight torch.Size([768, 288])\n",
|
157 |
+
"model.layers.2.block_sparse_moe.experts.3.w1.weight torch.Size([768, 288])\n",
|
158 |
+
"model.layers.2.block_sparse_moe.experts.3.w2.weight torch.Size([288, 768])\n",
|
159 |
+
"model.layers.2.block_sparse_moe.experts.3.w3.weight torch.Size([768, 288])\n",
|
160 |
+
"model.layers.3.input_layernorm.weight torch.Size([288])\n",
|
161 |
+
"model.layers.3.post_attention_layernorm.weight torch.Size([288])\n",
|
162 |
+
"model.layers.3.self_attn.k_proj.weight torch.Size([288, 288])\n",
|
163 |
+
"model.layers.3.self_attn.o_proj.weight torch.Size([288, 288])\n",
|
164 |
+
"model.layers.3.self_attn.q_proj.weight torch.Size([288, 288])\n",
|
165 |
+
"model.layers.3.self_attn.v_proj.weight torch.Size([288, 288])\n",
|
166 |
+
"model.layers.3.block_sparse_moe.gate.weight torch.Size([4, 288])\n",
|
167 |
+
"model.layers.3.block_sparse_moe.experts.0.w1.weight torch.Size([768, 288])\n",
|
168 |
+
"model.layers.3.block_sparse_moe.experts.0.w2.weight torch.Size([288, 768])\n",
|
169 |
+
"model.layers.3.block_sparse_moe.experts.0.w3.weight torch.Size([768, 288])\n",
|
170 |
+
"model.layers.3.block_sparse_moe.experts.1.w1.weight torch.Size([768, 288])\n",
|
171 |
+
"model.layers.3.block_sparse_moe.experts.1.w2.weight torch.Size([288, 768])\n",
|
172 |
+
"model.layers.3.block_sparse_moe.experts.1.w3.weight torch.Size([768, 288])\n",
|
173 |
+
"model.layers.3.block_sparse_moe.experts.2.w1.weight torch.Size([768, 288])\n",
|
174 |
+
"model.layers.3.block_sparse_moe.experts.2.w2.weight torch.Size([288, 768])\n",
|
175 |
+
"model.layers.3.block_sparse_moe.experts.2.w3.weight torch.Size([768, 288])\n",
|
176 |
+
"model.layers.3.block_sparse_moe.experts.3.w1.weight torch.Size([768, 288])\n",
|
177 |
+
"model.layers.3.block_sparse_moe.experts.3.w2.weight torch.Size([288, 768])\n",
|
178 |
+
"model.layers.3.block_sparse_moe.experts.3.w3.weight torch.Size([768, 288])\n",
|
179 |
+
"model.layers.4.input_layernorm.weight torch.Size([288])\n",
|
180 |
+
"model.layers.4.post_attention_layernorm.weight torch.Size([288])\n",
|
181 |
+
"model.layers.4.self_attn.k_proj.weight torch.Size([288, 288])\n",
|
182 |
+
"model.layers.4.self_attn.o_proj.weight torch.Size([288, 288])\n",
|
183 |
+
"model.layers.4.self_attn.q_proj.weight torch.Size([288, 288])\n",
|
184 |
+
"model.layers.4.self_attn.v_proj.weight torch.Size([288, 288])\n",
|
185 |
+
"model.layers.4.block_sparse_moe.gate.weight torch.Size([4, 288])\n",
|
186 |
+
"model.layers.4.block_sparse_moe.experts.0.w1.weight torch.Size([768, 288])\n",
|
187 |
+
"model.layers.4.block_sparse_moe.experts.0.w2.weight torch.Size([288, 768])\n",
|
188 |
+
"model.layers.4.block_sparse_moe.experts.0.w3.weight torch.Size([768, 288])\n",
|
189 |
+
"model.layers.4.block_sparse_moe.experts.1.w1.weight torch.Size([768, 288])\n",
|
190 |
+
"model.layers.4.block_sparse_moe.experts.1.w2.weight torch.Size([288, 768])\n",
|
191 |
+
"model.layers.4.block_sparse_moe.experts.1.w3.weight torch.Size([768, 288])\n",
|
192 |
+
"model.layers.4.block_sparse_moe.experts.2.w1.weight torch.Size([768, 288])\n",
|
193 |
+
"model.layers.4.block_sparse_moe.experts.2.w2.weight torch.Size([288, 768])\n",
|
194 |
+
"model.layers.4.block_sparse_moe.experts.2.w3.weight torch.Size([768, 288])\n",
|
195 |
+
"model.layers.4.block_sparse_moe.experts.3.w1.weight torch.Size([768, 288])\n",
|
196 |
+
"model.layers.4.block_sparse_moe.experts.3.w2.weight torch.Size([288, 768])\n",
|
197 |
+
"model.layers.4.block_sparse_moe.experts.3.w3.weight torch.Size([768, 288])\n",
|
198 |
+
"model.layers.5.input_layernorm.weight torch.Size([288])\n",
|
199 |
+
"model.layers.5.post_attention_layernorm.weight torch.Size([288])\n",
|
200 |
+
"model.layers.5.self_attn.k_proj.weight torch.Size([288, 288])\n",
|
201 |
+
"model.layers.5.self_attn.o_proj.weight torch.Size([288, 288])\n",
|
202 |
+
"model.layers.5.self_attn.q_proj.weight torch.Size([288, 288])\n",
|
203 |
+
"model.layers.5.self_attn.v_proj.weight torch.Size([288, 288])\n",
|
204 |
+
"model.layers.5.block_sparse_moe.gate.weight torch.Size([4, 288])\n",
|
205 |
+
"model.layers.5.block_sparse_moe.experts.0.w1.weight torch.Size([768, 288])\n",
|
206 |
+
"model.layers.5.block_sparse_moe.experts.0.w2.weight torch.Size([288, 768])\n",
|
207 |
+
"model.layers.5.block_sparse_moe.experts.0.w3.weight torch.Size([768, 288])\n",
|
208 |
+
"model.layers.5.block_sparse_moe.experts.1.w1.weight torch.Size([768, 288])\n",
|
209 |
+
"model.layers.5.block_sparse_moe.experts.1.w2.weight torch.Size([288, 768])\n",
|
210 |
+
"model.layers.5.block_sparse_moe.experts.1.w3.weight torch.Size([768, 288])\n",
|
211 |
+
"model.layers.5.block_sparse_moe.experts.2.w1.weight torch.Size([768, 288])\n",
|
212 |
+
"model.layers.5.block_sparse_moe.experts.2.w2.weight torch.Size([288, 768])\n",
|
213 |
+
"model.layers.5.block_sparse_moe.experts.2.w3.weight torch.Size([768, 288])\n",
|
214 |
+
"model.layers.5.block_sparse_moe.experts.3.w1.weight torch.Size([768, 288])\n",
|
215 |
+
"model.layers.5.block_sparse_moe.experts.3.w2.weight torch.Size([288, 768])\n",
|
216 |
+
"model.layers.5.block_sparse_moe.experts.3.w3.weight torch.Size([768, 288])\n"
|
217 |
+
]
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"source": [
|
221 |
+
"N_EXPERTS = 4\n",
|
222 |
+
"N_LAYERS = 6\n",
|
223 |
+
"N_FF = 768\n",
|
224 |
+
"N_EMBD = 288\n",
|
225 |
+
"\n",
|
226 |
+
"moe_model = dict()\n",
|
227 |
+
"def copy_tensor(name, new_name = None):\n",
|
228 |
+
" new_name = name if new_name is None else new_name\n",
|
229 |
+
" moe_model[new_name] = torch.clone(model[name])\n",
|
230 |
+
"\n",
|
231 |
+
"copy_tensor('model.embed_tokens.weight')\n",
|
232 |
+
"copy_tensor('model.norm.weight')\n",
|
233 |
+
"copy_tensor('model.embed_tokens.weight', 'lm_head.weight')\n",
|
234 |
+
"\n",
|
235 |
+
"torch.manual_seed(0)\n",
|
236 |
+
"for il in range(N_LAYERS):\n",
|
237 |
+
" copy_tensor(f'model.layers.{il}.input_layernorm.weight')\n",
|
238 |
+
" copy_tensor(f'model.layers.{il}.post_attention_layernorm.weight')\n",
|
239 |
+
" copy_tensor(f'model.layers.{il}.self_attn.k_proj.weight')\n",
|
240 |
+
" copy_tensor(f'model.layers.{il}.self_attn.o_proj.weight')\n",
|
241 |
+
" copy_tensor(f'model.layers.{il}.self_attn.q_proj.weight')\n",
|
242 |
+
" copy_tensor(f'model.layers.{il}.self_attn.v_proj.weight')\n",
|
243 |
+
" moe_model[f'model.layers.{il}.block_sparse_moe.gate.weight'] = torch.rand(N_EXPERTS, N_EMBD)\n",
|
244 |
+
" for ex in range(N_EXPERTS):\n",
|
245 |
+
" copy_tensor(f'model.layers.{il}.mlp.gate_proj.weight', f'model.layers.{il}.block_sparse_moe.experts.{ex}.w1.weight')\n",
|
246 |
+
" copy_tensor(f'model.layers.{il}.mlp.down_proj.weight', f'model.layers.{il}.block_sparse_moe.experts.{ex}.w2.weight')\n",
|
247 |
+
" copy_tensor(f'model.layers.{il}.mlp.up_proj.weight', f'model.layers.{il}.block_sparse_moe.experts.{ex}.w3.weight')\n",
|
248 |
+
"\n",
|
249 |
+
"for name, tensor in moe_model.items():\n",
|
250 |
+
" print(name, tensor.shape)"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 26,
|
256 |
+
"id": "19817bec-448f-4619-8772-2b3c77f0a1c2",
|
257 |
+
"metadata": {},
|
258 |
+
"outputs": [],
|
259 |
+
"source": [
|
260 |
+
"from safetensors.torch import save_file\n",
|
261 |
+
"\n",
|
262 |
+
"save_file(moe_model, \"model.safetensors\", metadata={\"format\": \"pt\"})"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"id": "e5bfd2cb-f53b-4285-bf5d-52a6c23779e0",
|
269 |
+
"metadata": {},
|
270 |
+
"outputs": [],
|
271 |
+
"source": []
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "code",
|
275 |
+
"execution_count": 15,
|
276 |
+
"id": "e29a4b7e-e390-4d69-857c-02fc6065e33d",
|
277 |
+
"metadata": {},
|
278 |
+
"outputs": [],
|
279 |
+
"source": [
|
280 |
+
"import os\n",
|
281 |
+
"import json\n",
|
282 |
+
"\n",
|
283 |
+
"index_json = {\n",
|
284 |
+
" \"metadata\": {\n",
|
285 |
+
" \"total_size\": os.path.getsize(\"model.safetensors\"),\n",
|
286 |
+
" \"format\": \"safetensors\"\n",
|
287 |
+
" },\n",
|
288 |
+
" \"weight_map\": {}\n",
|
289 |
+
"}\n",
|
290 |
+
"\n",
|
291 |
+
"for name, _ in moe_model.items():\n",
|
292 |
+
" index_json[\"weight_map\"][name] = \"model.safetensors\"\n",
|
293 |
+
"\n",
|
294 |
+
"#with open(\"model.safetensors.index.json\", 'w') as json_file:\n",
|
295 |
+
"# json.dump(index_json, json_file, indent=2)"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"id": "c7e0736c-0139-4808-8943-c9eba5dcfc76",
|
302 |
+
"metadata": {},
|
303 |
+
"outputs": [],
|
304 |
+
"source": []
|
305 |
+
}
|
306 |
+
],
|
307 |
+
"metadata": {
|
308 |
+
"kernelspec": {
|
309 |
+
"display_name": "Python 3 (ipykernel)",
|
310 |
+
"language": "python",
|
311 |
+
"name": "python3"
|
312 |
+
},
|
313 |
+
"language_info": {
|
314 |
+
"codemirror_mode": {
|
315 |
+
"name": "ipython",
|
316 |
+
"version": 3
|
317 |
+
},
|
318 |
+
"file_extension": ".py",
|
319 |
+
"mimetype": "text/x-python",
|
320 |
+
"name": "python",
|
321 |
+
"nbconvert_exporter": "python",
|
322 |
+
"pygments_lexer": "ipython3",
|
323 |
+
"version": "3.10.12"
|
324 |
+
}
|
325 |
+
},
|
326 |
+
"nbformat": 4,
|
327 |
+
"nbformat_minor": 5
|
328 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.36.0.dev0"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbfa0289f68a8dd721d10eb12d8bd82e098455682027f6f9986ba548913f9082
|
3 |
+
size 72744704
|
model_original.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9e8d4614e24c89e99502000294af0aab73e9266029357377578e0a504b7f8d9
|
3 |
+
size 30389560
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"__type": "AddedToken",
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
"clean_up_tokenization_spaces": false,
|
11 |
+
"eos_token": {
|
12 |
+
"__type": "AddedToken",
|
13 |
+
"content": "</s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"model_max_length": 2048,
|
20 |
+
"pad_token": null,
|
21 |
+
"sp_model_kwargs": {},
|
22 |
+
"tokenizer_class": "LlamaTokenizer",
|
23 |
+
"unk_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<unk>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"use_default_system_prompt": true
|
32 |
+
}
|