george24's picture
End of training
b5a32c9 verified
|
raw
history blame
1.88 kB
metadata
license: other
library_name: peft
tags:
  - generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hubbub-sentiment_llama3
    results: []

hubbub-sentiment_llama3

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4586
  • Accuracy: 0.8269
  • Precision: 0.8234
  • Recall: 0.8269
  • F1: 0.8235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.821 0.9998 1406 0.8073 0.6595 0.7055 0.6595 0.5621
0.7134 1.9996 2812 0.6063 0.7508 0.7422 0.7508 0.7427
0.5814 2.9995 4218 0.4586 0.8269 0.8234 0.8269 0.8235

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1