Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +11 -11
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 272.94 +/- 19.26
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00fb182560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00fb1825f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00fb182680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00fb182710>", "_build": "<function ActorCriticPolicy._build at 0x7f00fb1827a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00fb182830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00fb1828c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00fb182950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00fb1829e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00fb182a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00fb182b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00fb1cf810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVUgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAABTk/t5VlSd3K6xkOUBnXqnaVgnGShhKnLh8vYXRX+5ra/W8MHXmTT07YecaUXwpd57YKgT0GQhHCeqvBUf1BzW/sA2uAOsPXNBpwTVRGHodjGoWesZS4J0EoeSfjTw4+ixkhUGfabykqvyIe74usLiS/lMGBiWuFCF9niUqBWlKNqbvn2RGMOyDSDCmWEGliqQ8PEmvOpIrnoQWYH6P4CDB5F1W69hSk+7SZqRMz17/MHt/VU/PNuT72TNENmFuAgNvJLKf/ETMS2DC3QhxKE0ORmoGv2yqk9iRJCj+7YC0RGZbGfUsijJXMnthYRJQHGIveXEivGev9cgiuYpFKTFclp7cOyCVaXiWOaPFYva0cxvur9HEYIu6I8Aumo0u+Q8QK0unn4lw/d315DEMiEyj1feA0iPO3kupr0734bgWqZXCdcWl4SNiGfT04C0LAK1BPlsb0qSD5tF2SfhRkpQBFaCmwHhxfy9O2SBkRuVSaPzb8nzx0rVD68MioUneuhd9D+kBv6sfyw5uXZvJQX2/THcFXUmJbo75g9aIYcdLYMO8uo0Flc9tn/ig82BPbP0H38D4MUysDaPVv9tkOE3djjskEFlImELd5/zgv42YtzXYLK8UK52Yy9JPlNrkZg6fNXmRsSOXjEs58P7snS9G1BVXizofkXMyJV5jw7YXqQkFhMLKqHXLPwzuENVEU0rBm/4N40B41yUCb3BIRYUJ3UyUHdPNQZHIezN/YRQmpFRaDu8Majjd1zLG4vl3Jn/Tt4A0ZLMGMBSUHxpVMpKQFpbsem4n2BKUsAhND8T9mnDnCafhCtdbzEZiD1Y5pb4QRatvg2Wj/LDJ89imdjgYJZ9rGCrkiPrIJGWVK4Mvl3ZOrLaP86c/MipdGDt44q3Bpr4SXvrI09HPpo6tMq+oa4apWLPLMJFmot+JOw6t2MFCSSrxg2EU3MpvrjRyB5PSJ47Fvuvm4g9AXQIGwoiwRD+jWFLLFPUE8oydsiAqLmzSBsEmZBvwgJNFcWS8X9xXsVrh+G5JK1wdG42jsZuG1C/rEC+HQjq5fJ8YgdZuU1hzT6oqs0WlX2W4o2OEqwDryFnD9Gm/DxR32ycYROtr+Dyn+1uouTw0N/7Oj1NR1drfIAFfxr6URBlYgW2sGzSJNytEzaqyDN0imh78vrnuSY1wtzjhA8qgTCiMAFXYS9JnjyIBC/h8xDz9KenfDFx5UYIhrQolJOQ/LW1CRuEYKMBMwxLpucYPHroH5hFgzID8g9xL3/22r0wtBMkb57m9f/2CSA0xyU1Lh6ak0O5EnV6kYjKErwCSncuwOzmqKFjeqrS6pmb/w+sCUyCGexWTkfDxmuu/sfFI7z/Vy4lIJDf6c+FNfgjWI/yXM9nUlblIFPanbj3GT5r8JzHCriYVvjAWN8raQotnLYQ55M6KTdShZdnkSt1Hw+atHXK9R9BjNc3b7Pv1Ghwoot3kX0hZPc6fUNwXkgN4OFjt26xHdgyuJuwxZBe1C1n3czTEZfRRX/wGncDC5WpBEChSfYVR02h1aMvVxensrWgePJrnXSDdAeUHFJZlRDjIQhGPtGMjQ+JQtaZqDuXibqQ1qC6LGLHBQ+3uJuIWGTSmNZsFdFnpbhCWfZlet32nZMWSRExRkoLu19X7DJYH+EDS+m5LkqnLwmvZC5GBu4pqTczsVd1vsMyrG7wHZsEPQfS+GbgxRjFkssydAf1rI8kLWQX6UYGmlo/8r+ral+EbBdq4o/MMrekpaidBlLjZLuef8fHgcbQE4Xvmmc2jGBISFdD+HCgEJqlF/TpiWev9ky9bIGSh3bR1/JEePyAFenwmWaE7B1AdPP1SrXMchuiE51/OEPzRlXlo1k05ThXblSUvC6MxxVGkD5NbayYbQkorWlcCKMYZXi4gt1erT4NN/LSDkHBznTedxwdxSEjZ+hGNVvZGbkdLda+Cs7xXdQQx0EyHHdqsDHPxyWwhM+/WjUvtXgJ8PNUnk/whsJiRopU7gEzT/gzeDJ6pZhzXQCvT8euT+cM13ZuuBPz5TSl7BhPFvyzx5tK1ntUwthdfmLv1s6X68koUxOQ5Qf/D4QrkyLUrpS8m6Cb5QOvdqm93xp6kXnrbbD0fO3FvQq60NX7nQUTbfvGthaUhtEPSDdtxPJVR8NGZZzqRpq5MeSSuQrZRaEDlKKkIpy8QX1pnGNOmW1ozl0Mr/aOunrZn32reRZoT37Hv0geMbANE8aD7p4ZjcTvcZamW3ftU3OyBTP8TIPkSWRg6ZyvpdPvpZnbs7Ss2v8X+3Rv/jzWkkZxvN7vRW+z7fdyNXXWw6679653oxn3jVT48qaURmaZAqmnUB05QZpnPXob8GCKu42ZQiQTYpaGkvZOGUs8h64p1EA6c7Pns7LtyMG6VSwVTh9QXSqF7wUghmgxf1JSK13TnywoZ6Fvxf/vDj86CFCs0TaNdIkZ4zzdrK/KgriZ5tsctvZk4ieDoUbA9FLk1D7JwA8dEhzgg+KCwYKrMLtxlq3gMDWdYcrRRM0S8Q+yI149P6U9rzkV2QpZGCawprikyUQ7zgG5MdG094211lIjvqKOjS8ADqdHG23+VCI5pZDUd9C1BB6kJiHfRKswQl4jt6H5ssmsVJBuwF3zTwDz2wfrFya4BYY5HzedHcbnkScYvZ/XBUfplACs4BrZu+VWn8gvIbKAwOumXezI5GmOJRgc42aZiYduKkv3qg7W4Ir3mB0D6Ozkwta8gJFoLv5hcefotqfxBXw1avI7oSMqLnm/I5S5CoC4NeErxvY2bc46W0IKEzbrBTvEjCni7QRhqks3ONQ3qrOHn//PxBh4dS3rU6h/D9GWEMaMQjtXvd8rJTEhArkzADBE45wdUCfT7SkBE9bF9HHI+iKak32A9FI6bTfbsj5T5uVobD/qpg+C2obDMIYYkMP08tK2EpDRYluvzJJT7Sf5Sx8gVD7E2mUWkwtSStDlWqthYHfQ7NBTpfrOzfFLgyLWd5hbfS00acygC1pKm1MBoVc06ht+IAlMBEAoN5GWkr5pwkJvCQbkqRniD214nBqQIHVZPR+BdUZ3zCJ6rM6kFE99j57flveNZX5o4V7euPd93Ir/X2+LVSFrEHLAwndzPBcEK9102+Y0OcGHu5+qRr+FNqEUExDFOW5iAHXvSOvSFZ3GVt0tYNGL/Fwic1dzt6c96mEJ/Qs30hoMcF2QH9vujdHrrIO7RozxN7O0AZ2j8mZRqfDkhBbodC5cg0LBlDYj5naP7JtPwfCJCXMltC85uimXcLdVhueIn8n6Pv0kQxqFGVusm9neruB3nlGVGAxoEAzojA6UdJRijANwb3OUSxR1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653951669.8778193, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzT6yvTHilj99c5e+rSL0vkhyy72mjyK+AAAAAAAAAABAbj2+80E8PzRehL0jmuC+KW1XviYtVT0AAAAAAAAAAEpbrD425Rg/uUeRvka3574Aavw9K0o2vgAAAAAAAAAAAC4IPK4JgLr4JC80c6FHLxozYDufe5izAACAPwAAgD+azA4+amgyPh4ghL60IYa+dS52vVZto7wAAAAAAAAAABu8tr7NbUM/hkxWPlFLgr7wf0O+4mQpPgAAAAAAAAAAAFR2PDYURrwHUp6769WWPFnsrz07oHa9AACAPwAAgD+ANhc94N6xP+Z/Jj4TCpq+dXTPPJtM3T0AAAAAAAAAAHsmlb5lQBo/ehkmPjK2rb7BUN29/1i5PQAAAAAAAAAA+msZvt9dOT+72NQ9PGGRvvZBmb3rDJ09AAAAAAAAAACm1mo+1jONP+UxlT5blQG/SOaWPoKujLwAAAAAAAAAAGAfDr6COpk/DJ0svrrH4r61Xvy9AxaiPAAAAAAAAAAAM64HPY8hE7xFG2g7o9y4POMdgb0u/Zc9AACAPwAAgD8z6uC8EtWlP2oaab1My+6+rYMdvUVRzbsAAAAAAAAAACZwVb73DCI/FuiEPloZor4HiAG9JC0zPgAAAAAAAAAA8wbfPa2Goj877Bk/CyX1vlIIkz0pbII+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQYF38umYcECUhpRSlIwBbJRL/YwBdJRHQJJAQAmzByl1fZQoaAZoCWgPQwimQ6fnnaVyQJSGlFKUaBVNQAFoFkdAkkBk3n6l+HV9lChoBmgJaA9DCJZCIJe4JW1AlIaUUpRoFU0gAWgWR0CSQR5vtMPCdX2UKGgGaAloD0MIWwndJXEfbkCUhpRSlGgVTUIBaBZHQJJCBM6BAfN1fZQoaAZoCWgPQwgtI/WeyuVuQJSGlFKUaBVNFQFoFkdAkkICy2QXAXV9lChoBmgJaA9DCP0xrU1jC21AlIaUUpRoFUv5aBZHQJJDFc5bQkZ1fZQoaAZoCWgPQwisNv+vevNxQJSGlFKUaBVNNAFoFkdAkkQHC4z7/HV9lChoBmgJaA9DCIS9iSH5WHBAlIaUUpRoFU0WAWgWR0CSRJgVGkN4dX2UKGgGaAloD0MIvwzGiER7cUCUhpRSlGgVTSMBaBZHQJJE8AvL5h11fZQoaAZoCWgPQwhuhbAay+VuQJSGlFKUaBVNMAFoFkdAkkUjmW+oL3V9lChoBmgJaA9DCHk+A+pNkXBAlIaUUpRoFUv7aBZHQJJGajk+5e91fZQoaAZoCWgPQwh3gZICixZuQJSGlFKUaBVNCQFoFkdAkkcf420iQnV9lChoBmgJaA9DCMrBbAKMlW9AlIaUUpRoFU0CAWgWR0CSR2BEroW6dX2UKGgGaAloD0MILlOT4A09cECUhpRSlGgVTQoBaBZHQJJHwKmbb111fZQoaAZoCWgPQwjXE10XfrlxQJSGlFKUaBVNQAFoFkdAkkh+/cnE23V9lChoBmgJaA9DCGrC9pPx4nFAlIaUUpRoFU0FAWgWR0CSSIfw7T2GdX2UKGgGaAloD0MIZoaNsn5VcECUhpRSlGgVS/xoFkdAkkiFGkN4JXV9lChoBmgJaA9DCNGUnX6QyHFAlIaUUpRoFU0MAWgWR0CSSNi7TUiIdX2UKGgGaAloD0MIDcNHxNS4cECUhpRSlGgVTRgBaBZHQJJJ+pkwvg51fZQoaAZoCWgPQwjBqQ8kr0lyQJSGlFKUaBVNAAFoFkdAkkoFt4zJp3V9lChoBmgJaA9DCGyYofHET3BAlIaUUpRoFU0pAWgWR0CSSypIMBp6dX2UKGgGaAloD0MIKEhsdw96cUCUhpRSlGgVTQwBaBZHQJJLaVcD8tR1fZQoaAZoCWgPQwjvVMA9TztxQJSGlFKUaBVNFQFoFkdAkkyADV6NVHV9lChoBmgJaA9DCInRcwvd4GxAlIaUUpRoFU0QAWgWR0CSTOyAQQMAdX2UKGgGaAloD0MIHOp3YSshckCUhpRSlGgVTR8BaBZHQJJNzU3GXHB1fZQoaAZoCWgPQwhwzojSHuJxQJSGlFKUaBVNLwFoFkdAkk6VERaouXV9lChoBmgJaA9DCCB7vftjQnBAlIaUUpRoFU0vAWgWR0CSUDzdDYywdX2UKGgGaAloD0MI0lPkELHocUCUhpRSlGgVTRsBaBZHQJJQSSOinHh1fZQoaAZoCWgPQwjRzf5Aub9uQJSGlFKUaBVNEwFoFkdAklCbQb+98XV9lChoBmgJaA9DCLGk3H0O/W1AlIaUUpRoFU0lAWgWR0CSUNf2saKldX2UKGgGaAloD0MIAMeePVfwcECUhpRSlGgVTQYBaBZHQJJQ9xiobXJ1fZQoaAZoCWgPQwjYLQJj/alsQJSGlFKUaBVNIAFoFkdAklHRegL7XXV9lChoBmgJaA9DCPMDV3lChHJAlIaUUpRoFU0iAWgWR0CSUd2JSBK+dX2UKGgGaAloD0MI3A2itaL3ckCUhpRSlGgVTQ0BaBZHQJJSyDSPU8V1fZQoaAZoCWgPQwib/uxHipByQJSGlFKUaBVNOgFoFkdAklLwssg+yXV9lChoBmgJaA9DCJ4oCYk0RHBAlIaUUpRoFU0NAWgWR0CSVCD3/PxAdX2UKGgGaAloD0MIzbBR1i9NckCUhpRSlGgVS+VoFkdAklRRKQJXyXV9lChoBmgJaA9DCA8r3PLRTXBAlIaUUpRoFU1AAWgWR0CSVGbbDdgwdX2UKGgGaAloD0MITmA6rVtWb0CUhpRSlGgVTRwBaBZHQJJUzh73PAx1fZQoaAZoCWgPQwhMx5xnbG1vQJSGlFKUaBVNIAFoFkdAklZoEB8x9HV9lChoBmgJaA9DCL5PVaEBeXJAlIaUUpRoFU0JAWgWR0CSV0Er5IpZdX2UKGgGaAloD0MI3h/vVavebUCUhpRSlGgVTRkBaBZHQJJtBRyfcvd1fZQoaAZoCWgPQwhYjSWsDX1tQJSGlFKUaBVNFgFoFkdAkm1HXmNipnV9lChoBmgJaA9DCImbU8lAWHNAlIaUUpRoFU0UAWgWR0CSbXc6vJRwdX2UKGgGaAloD0MIc9nonN9ScUCUhpRSlGgVTREBaBZHQJJufs9jgAJ1fZQoaAZoCWgPQwjn/upxn0hzQJSGlFKUaBVNGgFoFkdAkm7lNL127nV9lChoBmgJaA9DCGQipdk80XFAlIaUUpRoFU1PAWgWR0CSbwTNdJJ5dX2UKGgGaAloD0MIcTyfAXWucUCUhpRSlGgVTQUBaBZHQJJvcZ9/jKh1fZQoaAZoCWgPQwhxrIvb6KpwQJSGlFKUaBVNFAFoFkdAkm/SbpeNUHV9lChoBmgJaA9DCPdXj/vW+W5AlIaUUpRoFU0DAWgWR0CScKv4/NaAdX2UKGgGaAloD0MIn3WNlsO0cUCUhpRSlGgVTRQBaBZHQJJxeGL1mJ51fZQoaAZoCWgPQwiYTYBh+XJwQJSGlFKUaBVNEQFoFkdAknH3tnf2snV9lChoBmgJaA9DCOQPBp67xHBAlIaUUpRoFU0pAWgWR0CSckmEXcgydX2UKGgGaAloD0MI0GIpkq/Wa0CUhpRSlGgVTbQBaBZHQJJzStyPuG91fZQoaAZoCWgPQwinyYy3VW5yQJSGlFKUaBVNCgFoFkdAknOUNe+mFnV9lChoBmgJaA9DCOOpRxpcI2xAlIaUUpRoFUvzaBZHQJJzpy6tknV1fZQoaAZoCWgPQwh2jZYD/S5yQJSGlFKUaBVNBwFoFkdAknaBSYPXkHV9lChoBmgJaA9DCO0RaoaUJHFAlIaUUpRoFU0QAWgWR0CSdqCOFQEZdX2UKGgGaAloD0MIUb8LW7O1RECUhpRSlGgVS9NoFkdAkncgt8NQTHV9lChoBmgJaA9DCEsgJXbtpm9AlIaUUpRoFU0jAWgWR0CSd8d2gWaddX2UKGgGaAloD0MIY9AJoYPWbkCUhpRSlGgVTRABaBZHQJJ4qCf6Gg11fZQoaAZoCWgPQwg0R1Z+WTRxQJSGlFKUaBVNNAFoFkdAknmRX0XgtXV9lChoBmgJaA9DCLqhKTt9XHBAlIaUUpRoFU0JAWgWR0CSei77sOXmdX2UKGgGaAloD0MI5WGh1vSxckCUhpRSlGgVTTwBaBZHQJJ6PZyuIRB1fZQoaAZoCWgPQwiKHCJujiZwQJSGlFKUaBVNOAFoFkdAknqVZgXuV3V9lChoBmgJaA9DCDtxOV6BhXJAlIaUUpRoFU0GAWgWR0CSezaoddVvdX2UKGgGaAloD0MINUbrqOqEb0CUhpRSlGgVTSMBaBZHQJJ7sE8q4H51fZQoaAZoCWgPQwixbrw7MnRyQJSGlFKUaBVNFgFoFkdAknv/icXm/3V9lChoBmgJaA9DCGr3qwDfgUZAlIaUUpRoFU0AAWgWR0CSfD9mHxjKdX2UKGgGaAloD0MIf6KyYU0XcECUhpRSlGgVTR4BaBZHQJJ9XUI9kjJ1fZQoaAZoCWgPQwgBiSZQREJxQJSGlFKUaBVNPQFoFkdAkn5wHqu8snV9lChoBmgJaA9DCDbqIRqdbHFAlIaUUpRoFU0lAWgWR0CSgKm7J4jbdX2UKGgGaAloD0MI9IsS9JdZcUCUhpRSlGgVTRkBaBZHQJKA26reZXx1fZQoaAZoCWgPQwjReY1dIhtyQJSGlFKUaBVNEQFoFkdAkoEyntOVPnV9lChoBmgJaA9DCDhm2ZNA529AlIaUUpRoFU0uAWgWR0CSgSuXeFcqdX2UKGgGaAloD0MIHF2lu2vxckCUhpRSlGgVS/VoFkdAkoJXko4MnnV9lChoBmgJaA9DCIm1+BSA13JAlIaUUpRoFU0LAWgWR0CSgodkrf+CdX2UKGgGaAloD0MIP3CVJ9DpcECUhpRSlGgVTSUBaBZHQJKCqtxMnJF1fZQoaAZoCWgPQwhEFmni3RRxQJSGlFKUaBVNAQFoFkdAkoMkvf0mMXV9lChoBmgJaA9DCD4hO29jYnBAlIaUUpRoFU0QAWgWR0CSg0X9R77bdX2UKGgGaAloD0MI24e85epCYECUhpRSlGgVTegDaBZHQJKDyrxRVIZ1fZQoaAZoCWgPQwhwmj47YDZuQJSGlFKUaBVL+GgWR0CShD2XLNfPdX2UKGgGaAloD0MI6zh+qDSvcECUhpRSlGgVTQUBaBZHQJKETc/MW451fZQoaAZoCWgPQwipFabvdYBwQJSGlFKUaBVNGQFoFkdAkoR4g7o0RHV9lChoBmgJaA9DCJmCNc7mRXNAlIaUUpRoFUvqaBZHQJKFEZwXIlt1fZQoaAZoCWgPQwgt0VlmkcRvQJSGlFKUaBVNGgFoFkdAkoVUgbIcR3V9lChoBmgJaA9DCPRsVn0uX3FAlIaUUpRoFU0EAWgWR0CShpi83++/dX2UKGgGaAloD0MITmGlgkonckCUhpRSlGgVS/BoFkdAkofakuYhMnV9lChoBmgJaA9DCI50BkaeHXBAlIaUUpRoFU0fAWgWR0CSieO2AoXsdX2UKGgGaAloD0MIIorJG2Bkb0CUhpRSlGgVTSoBaBZHQJKKulxffGd1fZQoaAZoCWgPQwiZ1qaxvYFwQJSGlFKUaBVNLgFoFkdAkord3GGVRnV9lChoBmgJaA9DCIHoSZnUEXJAlIaUUpRoFU0IAWgWR0CSixeSjgyedX2UKGgGaAloD0MI7dgIxCt0cECUhpRSlGgVTRIBaBZHQJKLU7yQPqd1fZQoaAZoCWgPQwj43t+gvYRuQJSGlFKUaBVNCAFoFkdAkoul4HHFP3V9lChoBmgJaA9DCCRfCaREeGxAlIaUUpRoFU0xAWgWR0CSjD22G7BgdX2UKGgGaAloD0MITKq2m6DPcUCUhpRSlGgVS/hoFkdAkoxrgGbCrXV9lChoBmgJaA9DCGfTEcBNZ3BAlIaUUpRoFU0dAWgWR0CSjJLvCuU2dX2UKGgGaAloD0MIxLMEGYEucECUhpRSlGgVTQsBaBZHQJKNUKzAvct1fZQoaAZoCWgPQwgpJQSr6glwQJSGlFKUaBVL92gWR0CSjXTzd1uBdX2UKGgGaAloD0MIhBCQL2FhcECUhpRSlGgVTRgBaBZHQJKNi8Yht+F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00fb182560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00fb1825f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00fb182680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00fb182710>", "_build": "<function ActorCriticPolicy._build at 0x7f00fb1827a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00fb182830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00fb1828c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00fb182950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00fb1829e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00fb182a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00fb182b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00fb1cf810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1003520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653965614.886132, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmlcrvY9GA7rb/wWzl3FcsK/kv7lzS8ozAACAPwAAgD9aliG+j3N4vPojrzphoqQ5x7vTPbYJRLoAAIA/AAAAAJr6KL49Phg6I7OTPQT8PLrnEmu8FuEmOwAAgD8AAIA/AKUcvSf4QT9AsbK8VAbUvrAMrL3Tv1e8AAAAAAAAAADt5lY+28VKP2YyJ76O25a+q011PW78170AAAAAAAAAAOY7Ez3DpRq6MsB8ucnbubPdcQg7XQmTOAAAgD8AAIA/M9voPJPz/D4y0ui9vbqYvujFH70WK0m9AAAAAAAAAACNJo49Cw4zP/330717E7W+dDwfPcbkS70AAAAAAAAAAJo6g72uTPs9hqIMPXZ5G76/bko94iBmvQAAAAAAAAAAM1OeO5CVvT/9L/s8ES9FPp0EejydgsI9AAAAAAAAAACArEc+gpbYPvzVlL7cY5W+2zIxvaLSEL0AAAAAAAAAAMa+ID7b0x4/5TTPvSOksb6SSW49LQJ4vQAAAAAAAAAA0wdGvvGcjT/chMu+J2sQv/cslr5+9rK9AAAAAAAAAADaFaU92x6eP8d7xT5uHQW/tVzCPQj0XT4AAAAAAAAAAABodD5QlZs/5vDLPmdC5r5cf4o+Sz17vQAAAAAAAAAAZoIqveGYnboG18y0mkGHrNPZmbfI8NEzAACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITDeJQWC6Z0CUhpRSlIwBbJRN6AOMAXSUR0CQ5DrgOz6adX2UKGgGaAloD0MIZLFNKhrgbECUhpRSlGgVTVgCaBZHQJDkPF1jiGZ1fZQoaAZoCWgPQwhFK/cCMyptQJSGlFKUaBVL/WgWR0CQ5QCih37ldX2UKGgGaAloD0MI9+Y3TLR0b0CUhpRSlGgVTRUBaBZHQJDlAWvbGm11fZQoaAZoCWgPQwiUNH9MKy1xQJSGlFKUaBVNIwFoFkdAkOXxFuvU0HV9lChoBmgJaA9DCGgibHj67HBAlIaUUpRoFU0mAWgWR0CQ5iaPS2H+dX2UKGgGaAloD0MIImx4eqXsbUCUhpRSlGgVTTMBaBZHQJDngd5prUN1fZQoaAZoCWgPQwi+3v3x3qpxQJSGlFKUaBVL7mgWR0CQ570bLlmwdX2UKGgGaAloD0MIGcVyS6sacECUhpRSlGgVTRABaBZHQJDnxsYVIqd1fZQoaAZoCWgPQwiafR6jvENyQJSGlFKUaBVNHwFoFkdAkO61+uvECXV9lChoBmgJaA9DCNzawvMS63JAlIaUUpRoFU2nAWgWR0CQ70T6zmfXdX2UKGgGaAloD0MIaeVeYJaTckCUhpRSlGgVTRkBaBZHQJDvTsrupjt1fZQoaAZoCWgPQwgpz7wcds5xQJSGlFKUaBVNFAFoFkdAkO+IQjD8+HV9lChoBmgJaA9DCN2YnrBEqHBAlIaUUpRoFU0XAWgWR0CQ8Avi97F9dX2UKGgGaAloD0MIsDic+dU9b0CUhpRSlGgVS+9oFkdAkPCDzqbBoHV9lChoBmgJaA9DCFWlLa7xrm5AlIaUUpRoFUv3aBZHQJDwtvNu+AV1fZQoaAZoCWgPQwiFQgQcwrZtQJSGlFKUaBVNBQFoFkdAkPEWgBcRlHV9lChoBmgJaA9DCD3zcth9Vm1AlIaUUpRoFUvwaBZHQJDxLgUDdQB1fZQoaAZoCWgPQwgpWyTtRhFwQJSGlFKUaBVL6GgWR0CQ8bHYHxBmdX2UKGgGaAloD0MIToBh+TNccECUhpRSlGgVTQgBaBZHQJDxywpvxYt1fZQoaAZoCWgPQwi62or9pRlxQJSGlFKUaBVNKgFoFkdAkPPnNcGC7XV9lChoBmgJaA9DCIAQyZDj5nFAlIaUUpRoFU0LAWgWR0CQ9IDlYEGJdX2UKGgGaAloD0MIBW9Io4LXcUCUhpRSlGgVTRkBaBZHQJD0rUH6dlN1fZQoaAZoCWgPQwi2R2+4j2lwQJSGlFKUaBVNJAFoFkdAkPU7/Khcq3V9lChoBmgJaA9DCJ2ed2NBKm5AlIaUUpRoFUv1aBZHQJD6cOXmeUZ1fZQoaAZoCWgPQwjRdHYyuHJwQJSGlFKUaBVL7mgWR0CQ+rfPX05EdX2UKGgGaAloD0MI9tTqq6vob0CUhpRSlGgVS/VoFkdAkPuYq9XcQHV9lChoBmgJaA9DCI6u0t31hGxAlIaUUpRoFUvqaBZHQJD8C6I3zc11fZQoaAZoCWgPQwj9hR4xOm9yQJSGlFKUaBVL4WgWR0CQ/DxBE8aGdX2UKGgGaAloD0MI7BaBsb4Mc0CUhpRSlGgVTSoBaBZHQJD8yBczImx1fZQoaAZoCWgPQwgJxsGl40puQJSGlFKUaBVNCQFoFkdAkPza7NB4U3V9lChoBmgJaA9DCASvljszeHJAlIaUUpRoFU1CAWgWR0CQ/TswL3K0dX2UKGgGaAloD0MIWB6kp4ieckCUhpRSlGgVTSkBaBZHQJD+f/p+tr91fZQoaAZoCWgPQwjNzTeiewJwQJSGlFKUaBVNLQFoFkdAkP9WQKa5PXV9lChoBmgJaA9DCI/Ey9O5/W9AlIaUUpRoFUv0aBZHQJD/smZ3LV51fZQoaAZoCWgPQwgwDi4dM0xwQJSGlFKUaBVNPAFoFkdAkP+wwCbMHXV9lChoBmgJaA9DCKM7iJ0psnJAlIaUUpRoFUv4aBZHQJEAVhw2l2x1fZQoaAZoCWgPQwgOvjCZ6jVwQJSGlFKUaBVNEQFoFkdAkQa91hb4anV9lChoBmgJaA9DCBh9BWmGGHNAlIaUUpRoFU0eAWgWR0CRB+Kji4rjdX2UKGgGaAloD0MIEi9P5wqfcECUhpRSlGgVS/xoFkdAkQgvPgNwznV9lChoBmgJaA9DCPhT46UbhHFAlIaUUpRoFU0pAWgWR0CRCKYdhiLEdX2UKGgGaAloD0MIg94bQ4C2b0CUhpRSlGgVTQABaBZHQJEI1s41gpl1fZQoaAZoCWgPQwi0VrQ5TuVuQJSGlFKUaBVL/GgWR0CRCWV8kUsWdX2UKGgGaAloD0MIklhS7j6bcUCUhpRSlGgVTRUBaBZHQJEJs6tDD0l1fZQoaAZoCWgPQwj3x3vVyp1mQJSGlFKUaBVN6ANoFkdAkQpqTbFju3V9lChoBmgJaA9DCAa5izAFC3BAlIaUUpRoFU2QAWgWR0CRCmmixmkFdX2UKGgGaAloD0MIWB8PfXdGb0CUhpRSlGgVTRsBaBZHQJEKe3solUp1fZQoaAZoCWgPQwgfgqrRK4dsQJSGlFKUaBVNKgFoFkdAkQstqUNayXV9lChoBmgJaA9DCOF/K9mx40xAlIaUUpRoFUvgaBZHQJELfeHi3od1fZQoaAZoCWgPQwiKH2Pu2v9vQJSGlFKUaBVL+mgWR0CRDCzLfUF0dX2UKGgGaAloD0MItW6D2m/kb0CUhpRSlGgVTTIBaBZHQJEMolnh86V1fZQoaAZoCWgPQwgFxCRcCCJyQJSGlFKUaBVL+GgWR0CRDNROk+HKdX2UKGgGaAloD0MIaAdcV0zHckCUhpRSlGgVS9toFkdAkQ1u7L+xW3V9lChoBmgJaA9DCL4UHjR7c3JAlIaUUpRoFU0+AWgWR0CRDcFVktmMdX2UKGgGaAloD0MIijkIOloRSUCUhpRSlGgVS9poFkdAkRPWXb/OuHV9lChoBmgJaA9DCJs8ZTVdPGxAlIaUUpRoFUv7aBZHQJEUfaQFLWZ1fZQoaAZoCWgPQwjsLlBSYIZvQJSGlFKUaBVL8GgWR0CRFLmbLEDRdX2UKGgGaAloD0MIMunvpfAcbUCUhpRSlGgVTQwBaBZHQJEUwNXo1UF1fZQoaAZoCWgPQwjY17rUCC0sQJSGlFKUaBVL0mgWR0CRFTSgXdj5dX2UKGgGaAloD0MI4UGz694GcUCUhpRSlGgVTQEBaBZHQJEVpgXuVop1fZQoaAZoCWgPQwheMLjmTkVwQJSGlFKUaBVNFQFoFkdAkRZz/EOy3XV9lChoBmgJaA9DCCIbSBfbTnJAlIaUUpRoFU0OAWgWR0CRFuKiwjdIdX2UKGgGaAloD0MItoKmJdaCb0CUhpRSlGgVTRIBaBZHQJEXD/EOy3V1fZQoaAZoCWgPQwg4ZtmTAMdxQJSGlFKUaBVNBwFoFkdAkReIIWxhUnV9lChoBmgJaA9DCN+Hg4QoGHFAlIaUUpRoFUv8aBZHQJEZALNOdoZ1fZQoaAZoCWgPQwi3KonsA2dyQJSGlFKUaBVL2WgWR0CRGS9du5z6dX2UKGgGaAloD0MIhCwLJn76ckCUhpRSlGgVTS4BaBZHQJEZS3d9Dx91fZQoaAZoCWgPQwgl63B0VfpwQJSGlFKUaBVL7mgWR0CRGYEyckMTdX2UKGgGaAloD0MIIH2TpkF+cUCUhpRSlGgVTScBaBZHQJEZ3LZBcA11fZQoaAZoCWgPQwgCoIob9yRwQJSGlFKUaBVL62gWR0CRGtmmtQsPdX2UKGgGaAloD0MIaCWt+MZCckCUhpRSlGgVTUMBaBZHQJEgF70Fr2x1fZQoaAZoCWgPQwiXOsjrAX1xQJSGlFKUaBVL6mgWR0CRIDpobn5jdX2UKGgGaAloD0MIw9Zs5eXrcECUhpRSlGgVS9ZoFkdAkSBhcmjTKHV9lChoBmgJaA9DCLLWUGovwG9AlIaUUpRoFUv6aBZHQJEg12xIJ7d1fZQoaAZoCWgPQwhEv7Z+eiBuQJSGlFKUaBVL+2gWR0CRIOQ2uPmxdX2UKGgGaAloD0MIDcUdbzIUckCUhpRSlGgVTR4BaBZHQJEimWHDaXd1fZQoaAZoCWgPQwiOQLyuH6hyQJSGlFKUaBVL9mgWR0CRIrkz41xbdX2UKGgGaAloD0MIMSb9vRR7bUCUhpRSlGgVTQIBaBZHQJEjvqrzXjF1fZQoaAZoCWgPQwgEjZlEPQ9vQJSGlFKUaBVNLQFoFkdAkSPuP3i71HV9lChoBmgJaA9DCH/eVKQCcnJAlIaUUpRoFUveaBZHQJEkckAxSHd1fZQoaAZoCWgPQwgQroBCPY1wQJSGlFKUaBVNIAFoFkdAkSaScLBsRHV9lChoBmgJaA9DCAlRvqAFPXFAlIaUUpRoFU0kAWgWR0CRJpwco6S1dX2UKGgGaAloD0MIJCcTt4oPcUCUhpRSlGgVS91oFkdAkSbYqgAZKnV9lChoBmgJaA9DCL9iDRd5CHFAlIaUUpRoFU0bAWgWR0CRJwhIvrWzdX2UKGgGaAloD0MIpyVWRiNuckCUhpRSlGgVTUsBaBZHQJEspUHY6GR1fZQoaAZoCWgPQwiazeMwmKdvQJSGlFKUaBVL/mgWR0CRLQBreqJedX2UKGgGaAloD0MIaf8DrBV6cECUhpRSlGgVTSkBaBZHQJEtjIdU83d1fZQoaAZoCWgPQwjVlc/yvBBxQJSGlFKUaBVNJAFoFkdAkS3OxGDtgXV9lChoBmgJaA9DCLfRAN4Cu3FAlIaUUpRoFU0cAWgWR0CRLnqJMxoJdX2UKGgGaAloD0MIu31WmSk8cUCUhpRSlGgVS9toFkdAkS6uHrQgLnV9lChoBmgJaA9DCCZw626e/W9AlIaUUpRoFU0GAWgWR0CRL732EkB0dX2UKGgGaAloD0MILH3ognq6ckCUhpRSlGgVTWQBaBZHQJEwhpaiblR1fZQoaAZoCWgPQwhXe9gLBRptQJSGlFKUaBVL/GgWR0CRMOABkqc3dX2UKGgGaAloD0MI2A5G7BOgcUCUhpRSlGgVS/5oFkdAkTF0KzAvc3V9lChoBmgJaA9DCE92M6Nf5HBAlIaUUpRoFU0VAWgWR0CRMYWu5jH5dX2UKGgGaAloD0MIFsCUgYNEcECUhpRSlGgVS99oFkdAkTJFkhA4XHV9lChoBmgJaA9DCCPzyB+MbXJAlIaUUpRoFUvfaBZHQJEyq05U96l1fZQoaAZoCWgPQwhpGan3VPFwQJSGlFKUaBVL0mgWR0CRMuONYKYzdX2UKGgGaAloD0MILLmKxW9pcUCUhpRSlGgVS9poFkdAkTNr212JSHV9lChoBmgJaA9DCKuxhLXxCXJAlIaUUpRoFU0PAWgWR0CRM5svZh8ZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 256, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8119fdc816310de440178d536fba9a1bafe90dc59196bd551b349f1fec6200ee
|
3 |
+
size 144100
|
ppo-LunarLander-v2/data
CHANGED
@@ -22,7 +22,7 @@
|
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -31,7 +31,7 @@
|
|
31 |
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
"bounded_below": "[False False False False False False False False]",
|
33 |
"bounded_above": "[False False False False False False False False]",
|
34 |
-
"_np_random":
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
@@ -42,21 +42,21 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate": 0.
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,17 +66,17 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
|
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
31 |
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
"bounded_below": "[False False False False False False False False]",
|
33 |
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1003520,
|
46 |
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1653965614.886132,
|
51 |
+
"learning_rate": 0.001,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmlcrvY9GA7rb/wWzl3FcsK/kv7lzS8ozAACAPwAAgD9aliG+j3N4vPojrzphoqQ5x7vTPbYJRLoAAIA/AAAAAJr6KL49Phg6I7OTPQT8PLrnEmu8FuEmOwAAgD8AAIA/AKUcvSf4QT9AsbK8VAbUvrAMrL3Tv1e8AAAAAAAAAADt5lY+28VKP2YyJ76O25a+q011PW78170AAAAAAAAAAOY7Ez3DpRq6MsB8ucnbubPdcQg7XQmTOAAAgD8AAIA/M9voPJPz/D4y0ui9vbqYvujFH70WK0m9AAAAAAAAAACNJo49Cw4zP/330717E7W+dDwfPcbkS70AAAAAAAAAAJo6g72uTPs9hqIMPXZ5G76/bko94iBmvQAAAAAAAAAAM1OeO5CVvT/9L/s8ES9FPp0EejydgsI9AAAAAAAAAACArEc+gpbYPvzVlL7cY5W+2zIxvaLSEL0AAAAAAAAAAMa+ID7b0x4/5TTPvSOksb6SSW49LQJ4vQAAAAAAAAAA0wdGvvGcjT/chMu+J2sQv/cslr5+9rK9AAAAAAAAAADaFaU92x6eP8d7xT5uHQW/tVzCPQj0XT4AAAAAAAAAAABodD5QlZs/5vDLPmdC5r5cf4o+Sz17vQAAAAAAAAAAZoIqveGYnboG18y0mkGHrNPZmbfI8NEzAACAPwAAgD+UdJRiLg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITDeJQWC6Z0CUhpRSlIwBbJRN6AOMAXSUR0CQ5DrgOz6adX2UKGgGaAloD0MIZLFNKhrgbECUhpRSlGgVTVgCaBZHQJDkPF1jiGZ1fZQoaAZoCWgPQwhFK/cCMyptQJSGlFKUaBVL/WgWR0CQ5QCih37ldX2UKGgGaAloD0MI9+Y3TLR0b0CUhpRSlGgVTRUBaBZHQJDlAWvbGm11fZQoaAZoCWgPQwiUNH9MKy1xQJSGlFKUaBVNIwFoFkdAkOXxFuvU0HV9lChoBmgJaA9DCGgibHj67HBAlIaUUpRoFU0mAWgWR0CQ5iaPS2H+dX2UKGgGaAloD0MIImx4eqXsbUCUhpRSlGgVTTMBaBZHQJDngd5prUN1fZQoaAZoCWgPQwi+3v3x3qpxQJSGlFKUaBVL7mgWR0CQ570bLlmwdX2UKGgGaAloD0MIGcVyS6sacECUhpRSlGgVTRABaBZHQJDnxsYVIqd1fZQoaAZoCWgPQwiafR6jvENyQJSGlFKUaBVNHwFoFkdAkO61+uvECXV9lChoBmgJaA9DCNzawvMS63JAlIaUUpRoFU2nAWgWR0CQ70T6zmfXdX2UKGgGaAloD0MIaeVeYJaTckCUhpRSlGgVTRkBaBZHQJDvTsrupjt1fZQoaAZoCWgPQwgpz7wcds5xQJSGlFKUaBVNFAFoFkdAkO+IQjD8+HV9lChoBmgJaA9DCN2YnrBEqHBAlIaUUpRoFU0XAWgWR0CQ8Avi97F9dX2UKGgGaAloD0MIsDic+dU9b0CUhpRSlGgVS+9oFkdAkPCDzqbBoHV9lChoBmgJaA9DCFWlLa7xrm5AlIaUUpRoFUv3aBZHQJDwtvNu+AV1fZQoaAZoCWgPQwiFQgQcwrZtQJSGlFKUaBVNBQFoFkdAkPEWgBcRlHV9lChoBmgJaA9DCD3zcth9Vm1AlIaUUpRoFUvwaBZHQJDxLgUDdQB1fZQoaAZoCWgPQwgpWyTtRhFwQJSGlFKUaBVL6GgWR0CQ8bHYHxBmdX2UKGgGaAloD0MIToBh+TNccECUhpRSlGgVTQgBaBZHQJDxywpvxYt1fZQoaAZoCWgPQwi62or9pRlxQJSGlFKUaBVNKgFoFkdAkPPnNcGC7XV9lChoBmgJaA9DCIAQyZDj5nFAlIaUUpRoFU0LAWgWR0CQ9IDlYEGJdX2UKGgGaAloD0MIBW9Io4LXcUCUhpRSlGgVTRkBaBZHQJD0rUH6dlN1fZQoaAZoCWgPQwi2R2+4j2lwQJSGlFKUaBVNJAFoFkdAkPU7/Khcq3V9lChoBmgJaA9DCJ2ed2NBKm5AlIaUUpRoFUv1aBZHQJD6cOXmeUZ1fZQoaAZoCWgPQwjRdHYyuHJwQJSGlFKUaBVL7mgWR0CQ+rfPX05EdX2UKGgGaAloD0MI9tTqq6vob0CUhpRSlGgVS/VoFkdAkPuYq9XcQHV9lChoBmgJaA9DCI6u0t31hGxAlIaUUpRoFUvqaBZHQJD8C6I3zc11fZQoaAZoCWgPQwj9hR4xOm9yQJSGlFKUaBVL4WgWR0CQ/DxBE8aGdX2UKGgGaAloD0MI7BaBsb4Mc0CUhpRSlGgVTSoBaBZHQJD8yBczImx1fZQoaAZoCWgPQwgJxsGl40puQJSGlFKUaBVNCQFoFkdAkPza7NB4U3V9lChoBmgJaA9DCASvljszeHJAlIaUUpRoFU1CAWgWR0CQ/TswL3K0dX2UKGgGaAloD0MIWB6kp4ieckCUhpRSlGgVTSkBaBZHQJD+f/p+tr91fZQoaAZoCWgPQwjNzTeiewJwQJSGlFKUaBVNLQFoFkdAkP9WQKa5PXV9lChoBmgJaA9DCI/Ey9O5/W9AlIaUUpRoFUv0aBZHQJD/smZ3LV51fZQoaAZoCWgPQwgwDi4dM0xwQJSGlFKUaBVNPAFoFkdAkP+wwCbMHXV9lChoBmgJaA9DCKM7iJ0psnJAlIaUUpRoFUv4aBZHQJEAVhw2l2x1fZQoaAZoCWgPQwgOvjCZ6jVwQJSGlFKUaBVNEQFoFkdAkQa91hb4anV9lChoBmgJaA9DCBh9BWmGGHNAlIaUUpRoFU0eAWgWR0CRB+Kji4rjdX2UKGgGaAloD0MIEi9P5wqfcECUhpRSlGgVS/xoFkdAkQgvPgNwznV9lChoBmgJaA9DCPhT46UbhHFAlIaUUpRoFU0pAWgWR0CRCKYdhiLEdX2UKGgGaAloD0MIg94bQ4C2b0CUhpRSlGgVTQABaBZHQJEI1s41gpl1fZQoaAZoCWgPQwi0VrQ5TuVuQJSGlFKUaBVL/GgWR0CRCWV8kUsWdX2UKGgGaAloD0MIklhS7j6bcUCUhpRSlGgVTRUBaBZHQJEJs6tDD0l1fZQoaAZoCWgPQwj3x3vVyp1mQJSGlFKUaBVN6ANoFkdAkQpqTbFju3V9lChoBmgJaA9DCAa5izAFC3BAlIaUUpRoFU2QAWgWR0CRCmmixmkFdX2UKGgGaAloD0MIWB8PfXdGb0CUhpRSlGgVTRsBaBZHQJEKe3solUp1fZQoaAZoCWgPQwgfgqrRK4dsQJSGlFKUaBVNKgFoFkdAkQstqUNayXV9lChoBmgJaA9DCOF/K9mx40xAlIaUUpRoFUvgaBZHQJELfeHi3od1fZQoaAZoCWgPQwiKH2Pu2v9vQJSGlFKUaBVL+mgWR0CRDCzLfUF0dX2UKGgGaAloD0MItW6D2m/kb0CUhpRSlGgVTTIBaBZHQJEMolnh86V1fZQoaAZoCWgPQwgFxCRcCCJyQJSGlFKUaBVL+GgWR0CRDNROk+HKdX2UKGgGaAloD0MIaAdcV0zHckCUhpRSlGgVS9toFkdAkQ1u7L+xW3V9lChoBmgJaA9DCL4UHjR7c3JAlIaUUpRoFU0+AWgWR0CRDcFVktmMdX2UKGgGaAloD0MIijkIOloRSUCUhpRSlGgVS9poFkdAkRPWXb/OuHV9lChoBmgJaA9DCJs8ZTVdPGxAlIaUUpRoFUv7aBZHQJEUfaQFLWZ1fZQoaAZoCWgPQwjsLlBSYIZvQJSGlFKUaBVL8GgWR0CRFLmbLEDRdX2UKGgGaAloD0MIMunvpfAcbUCUhpRSlGgVTQwBaBZHQJEUwNXo1UF1fZQoaAZoCWgPQwjY17rUCC0sQJSGlFKUaBVL0mgWR0CRFTSgXdj5dX2UKGgGaAloD0MI4UGz694GcUCUhpRSlGgVTQEBaBZHQJEVpgXuVop1fZQoaAZoCWgPQwheMLjmTkVwQJSGlFKUaBVNFQFoFkdAkRZz/EOy3XV9lChoBmgJaA9DCCIbSBfbTnJAlIaUUpRoFU0OAWgWR0CRFuKiwjdIdX2UKGgGaAloD0MItoKmJdaCb0CUhpRSlGgVTRIBaBZHQJEXD/EOy3V1fZQoaAZoCWgPQwg4ZtmTAMdxQJSGlFKUaBVNBwFoFkdAkReIIWxhUnV9lChoBmgJaA9DCN+Hg4QoGHFAlIaUUpRoFUv8aBZHQJEZALNOdoZ1fZQoaAZoCWgPQwi3KonsA2dyQJSGlFKUaBVL2WgWR0CRGS9du5z6dX2UKGgGaAloD0MIhCwLJn76ckCUhpRSlGgVTS4BaBZHQJEZS3d9Dx91fZQoaAZoCWgPQwgl63B0VfpwQJSGlFKUaBVL7mgWR0CRGYEyckMTdX2UKGgGaAloD0MIIH2TpkF+cUCUhpRSlGgVTScBaBZHQJEZ3LZBcA11fZQoaAZoCWgPQwgCoIob9yRwQJSGlFKUaBVL62gWR0CRGtmmtQsPdX2UKGgGaAloD0MIaCWt+MZCckCUhpRSlGgVTUMBaBZHQJEgF70Fr2x1fZQoaAZoCWgPQwiXOsjrAX1xQJSGlFKUaBVL6mgWR0CRIDpobn5jdX2UKGgGaAloD0MIw9Zs5eXrcECUhpRSlGgVS9ZoFkdAkSBhcmjTKHV9lChoBmgJaA9DCLLWUGovwG9AlIaUUpRoFUv6aBZHQJEg12xIJ7d1fZQoaAZoCWgPQwhEv7Z+eiBuQJSGlFKUaBVL+2gWR0CRIOQ2uPmxdX2UKGgGaAloD0MIDcUdbzIUckCUhpRSlGgVTR4BaBZHQJEimWHDaXd1fZQoaAZoCWgPQwiOQLyuH6hyQJSGlFKUaBVL9mgWR0CRIrkz41xbdX2UKGgGaAloD0MIMSb9vRR7bUCUhpRSlGgVTQIBaBZHQJEjvqrzXjF1fZQoaAZoCWgPQwgEjZlEPQ9vQJSGlFKUaBVNLQFoFkdAkSPuP3i71HV9lChoBmgJaA9DCH/eVKQCcnJAlIaUUpRoFUveaBZHQJEkckAxSHd1fZQoaAZoCWgPQwgQroBCPY1wQJSGlFKUaBVNIAFoFkdAkSaScLBsRHV9lChoBmgJaA9DCAlRvqAFPXFAlIaUUpRoFU0kAWgWR0CRJpwco6S1dX2UKGgGaAloD0MIJCcTt4oPcUCUhpRSlGgVS91oFkdAkSbYqgAZKnV9lChoBmgJaA9DCL9iDRd5CHFAlIaUUpRoFU0bAWgWR0CRJwhIvrWzdX2UKGgGaAloD0MIpyVWRiNuckCUhpRSlGgVTUsBaBZHQJEspUHY6GR1fZQoaAZoCWgPQwiazeMwmKdvQJSGlFKUaBVL/mgWR0CRLQBreqJedX2UKGgGaAloD0MIaf8DrBV6cECUhpRSlGgVTSkBaBZHQJEtjIdU83d1fZQoaAZoCWgPQwjVlc/yvBBxQJSGlFKUaBVNJAFoFkdAkS3OxGDtgXV9lChoBmgJaA9DCLfRAN4Cu3FAlIaUUpRoFU0cAWgWR0CRLnqJMxoJdX2UKGgGaAloD0MIu31WmSk8cUCUhpRSlGgVS9toFkdAkS6uHrQgLnV9lChoBmgJaA9DCCZw626e/W9AlIaUUpRoFU0GAWgWR0CRL732EkB0dX2UKGgGaAloD0MILH3ognq6ckCUhpRSlGgVTWQBaBZHQJEwhpaiblR1fZQoaAZoCWgPQwhXe9gLBRptQJSGlFKUaBVL/GgWR0CRMOABkqc3dX2UKGgGaAloD0MI2A5G7BOgcUCUhpRSlGgVS/5oFkdAkTF0KzAvc3V9lChoBmgJaA9DCE92M6Nf5HBAlIaUUpRoFU0VAWgWR0CRMYWu5jH5dX2UKGgGaAloD0MIFsCUgYNEcECUhpRSlGgVS99oFkdAkTJFkhA4XHV9lChoBmgJaA9DCCPzyB+MbXJAlIaUUpRoFUvfaBZHQJEyq05U96l1fZQoaAZoCWgPQwhpGan3VPFwQJSGlFKUaBVL0mgWR0CRMuONYKYzdX2UKGgGaAloD0MILLmKxW9pcUCUhpRSlGgVS9poFkdAkTNr212JSHV9lChoBmgJaA9DCKuxhLXxCXJAlIaUUpRoFU0PAWgWR0CRM5svZh8ZdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 980,
|
79 |
+
"n_steps": 256,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f355bbd7f056bff4f9b2fa3fa802943fec49ccfcebb87c4ec9ce6560bebee11
|
3 |
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad107edc869025cdb2a9bc41c82582b9defb6b66178d31889247d85506791295
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4788524400899b2394094dd49f06111f6067bbe0d48d870af8615e9e09bbec44
|
3 |
+
size 190020
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 272.94391817834446, "std_reward": 19.26359226073063, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-31T03:13:31.877264"}
|