Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 260.39 +/- 19.23
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00fb182560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00fb1825f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00fb182680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00fb182710>", "_build": "<function ActorCriticPolicy._build at 0x7f00fb1827a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00fb182830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00fb1828c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00fb182950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00fb1829e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00fb182a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00fb182b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00fb1cf810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVUgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAABTk/t5VlSd3K6xkOUBnXqnaVgnGShhKnLh8vYXRX+5ra/W8MHXmTT07YecaUXwpd57YKgT0GQhHCeqvBUf1BzW/sA2uAOsPXNBpwTVRGHodjGoWesZS4J0EoeSfjTw4+ixkhUGfabykqvyIe74usLiS/lMGBiWuFCF9niUqBWlKNqbvn2RGMOyDSDCmWEGliqQ8PEmvOpIrnoQWYH6P4CDB5F1W69hSk+7SZqRMz17/MHt/VU/PNuT72TNENmFuAgNvJLKf/ETMS2DC3QhxKE0ORmoGv2yqk9iRJCj+7YC0RGZbGfUsijJXMnthYRJQHGIveXEivGev9cgiuYpFKTFclp7cOyCVaXiWOaPFYva0cxvur9HEYIu6I8Aumo0u+Q8QK0unn4lw/d315DEMiEyj1feA0iPO3kupr0734bgWqZXCdcWl4SNiGfT04C0LAK1BPlsb0qSD5tF2SfhRkpQBFaCmwHhxfy9O2SBkRuVSaPzb8nzx0rVD68MioUneuhd9D+kBv6sfyw5uXZvJQX2/THcFXUmJbo75g9aIYcdLYMO8uo0Flc9tn/ig82BPbP0H38D4MUysDaPVv9tkOE3djjskEFlImELd5/zgv42YtzXYLK8UK52Yy9JPlNrkZg6fNXmRsSOXjEs58P7snS9G1BVXizofkXMyJV5jw7YXqQkFhMLKqHXLPwzuENVEU0rBm/4N40B41yUCb3BIRYUJ3UyUHdPNQZHIezN/YRQmpFRaDu8Majjd1zLG4vl3Jn/Tt4A0ZLMGMBSUHxpVMpKQFpbsem4n2BKUsAhND8T9mnDnCafhCtdbzEZiD1Y5pb4QRatvg2Wj/LDJ89imdjgYJZ9rGCrkiPrIJGWVK4Mvl3ZOrLaP86c/MipdGDt44q3Bpr4SXvrI09HPpo6tMq+oa4apWLPLMJFmot+JOw6t2MFCSSrxg2EU3MpvrjRyB5PSJ47Fvuvm4g9AXQIGwoiwRD+jWFLLFPUE8oydsiAqLmzSBsEmZBvwgJNFcWS8X9xXsVrh+G5JK1wdG42jsZuG1C/rEC+HQjq5fJ8YgdZuU1hzT6oqs0WlX2W4o2OEqwDryFnD9Gm/DxR32ycYROtr+Dyn+1uouTw0N/7Oj1NR1drfIAFfxr6URBlYgW2sGzSJNytEzaqyDN0imh78vrnuSY1wtzjhA8qgTCiMAFXYS9JnjyIBC/h8xDz9KenfDFx5UYIhrQolJOQ/LW1CRuEYKMBMwxLpucYPHroH5hFgzID8g9xL3/22r0wtBMkb57m9f/2CSA0xyU1Lh6ak0O5EnV6kYjKErwCSncuwOzmqKFjeqrS6pmb/w+sCUyCGexWTkfDxmuu/sfFI7z/Vy4lIJDf6c+FNfgjWI/yXM9nUlblIFPanbj3GT5r8JzHCriYVvjAWN8raQotnLYQ55M6KTdShZdnkSt1Hw+atHXK9R9BjNc3b7Pv1Ghwoot3kX0hZPc6fUNwXkgN4OFjt26xHdgyuJuwxZBe1C1n3czTEZfRRX/wGncDC5WpBEChSfYVR02h1aMvVxensrWgePJrnXSDdAeUHFJZlRDjIQhGPtGMjQ+JQtaZqDuXibqQ1qC6LGLHBQ+3uJuIWGTSmNZsFdFnpbhCWfZlet32nZMWSRExRkoLu19X7DJYH+EDS+m5LkqnLwmvZC5GBu4pqTczsVd1vsMyrG7wHZsEPQfS+GbgxRjFkssydAf1rI8kLWQX6UYGmlo/8r+ral+EbBdq4o/MMrekpaidBlLjZLuef8fHgcbQE4Xvmmc2jGBISFdD+HCgEJqlF/TpiWev9ky9bIGSh3bR1/JEePyAFenwmWaE7B1AdPP1SrXMchuiE51/OEPzRlXlo1k05ThXblSUvC6MxxVGkD5NbayYbQkorWlcCKMYZXi4gt1erT4NN/LSDkHBznTedxwdxSEjZ+hGNVvZGbkdLda+Cs7xXdQQx0EyHHdqsDHPxyWwhM+/WjUvtXgJ8PNUnk/whsJiRopU7gEzT/gzeDJ6pZhzXQCvT8euT+cM13ZuuBPz5TSl7BhPFvyzx5tK1ntUwthdfmLv1s6X68koUxOQ5Qf/D4QrkyLUrpS8m6Cb5QOvdqm93xp6kXnrbbD0fO3FvQq60NX7nQUTbfvGthaUhtEPSDdtxPJVR8NGZZzqRpq5MeSSuQrZRaEDlKKkIpy8QX1pnGNOmW1ozl0Mr/aOunrZn32reRZoT37Hv0geMbANE8aD7p4ZjcTvcZamW3ftU3OyBTP8TIPkSWRg6ZyvpdPvpZnbs7Ss2v8X+3Rv/jzWkkZxvN7vRW+z7fdyNXXWw6679653oxn3jVT48qaURmaZAqmnUB05QZpnPXob8GCKu42ZQiQTYpaGkvZOGUs8h64p1EA6c7Pns7LtyMG6VSwVTh9QXSqF7wUghmgxf1JSK13TnywoZ6Fvxf/vDj86CFCs0TaNdIkZ4zzdrK/KgriZ5tsctvZk4ieDoUbA9FLk1D7JwA8dEhzgg+KCwYKrMLtxlq3gMDWdYcrRRM0S8Q+yI149P6U9rzkV2QpZGCawprikyUQ7zgG5MdG094211lIjvqKOjS8ADqdHG23+VCI5pZDUd9C1BB6kJiHfRKswQl4jt6H5ssmsVJBuwF3zTwDz2wfrFya4BYY5HzedHcbnkScYvZ/XBUfplACs4BrZu+VWn8gvIbKAwOumXezI5GmOJRgc42aZiYduKkv3qg7W4Ir3mB0D6Ozkwta8gJFoLv5hcefotqfxBXw1avI7oSMqLnm/I5S5CoC4NeErxvY2bc46W0IKEzbrBTvEjCni7QRhqks3ONQ3qrOHn//PxBh4dS3rU6h/D9GWEMaMQjtXvd8rJTEhArkzADBE45wdUCfT7SkBE9bF9HHI+iKak32A9FI6bTfbsj5T5uVobD/qpg+C2obDMIYYkMP08tK2EpDRYluvzJJT7Sf5Sx8gVD7E2mUWkwtSStDlWqthYHfQ7NBTpfrOzfFLgyLWd5hbfS00acygC1pKm1MBoVc06ht+IAlMBEAoN5GWkr5pwkJvCQbkqRniD214nBqQIHVZPR+BdUZ3zCJ6rM6kFE99j57flveNZX5o4V7euPd93Ir/X2+LVSFrEHLAwndzPBcEK9102+Y0OcGHu5+qRr+FNqEUExDFOW5iAHXvSOvSFZ3GVt0tYNGL/Fwic1dzt6c96mEJ/Qs30hoMcF2QH9vujdHrrIO7RozxN7O0AZ2j8mZRqfDkhBbodC5cg0LBlDYj5naP7JtPwfCJCXMltC85uimXcLdVhueIn8n6Pv0kQxqFGVusm9neruB3nlGVGAxoEAzojA6UdJRijANwb3OUSxR1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653951669.8778193, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzT6yvTHilj99c5e+rSL0vkhyy72mjyK+AAAAAAAAAABAbj2+80E8PzRehL0jmuC+KW1XviYtVT0AAAAAAAAAAEpbrD425Rg/uUeRvka3574Aavw9K0o2vgAAAAAAAAAAAC4IPK4JgLr4JC80c6FHLxozYDufe5izAACAPwAAgD+azA4+amgyPh4ghL60IYa+dS52vVZto7wAAAAAAAAAABu8tr7NbUM/hkxWPlFLgr7wf0O+4mQpPgAAAAAAAAAAAFR2PDYURrwHUp6769WWPFnsrz07oHa9AACAPwAAgD+ANhc94N6xP+Z/Jj4TCpq+dXTPPJtM3T0AAAAAAAAAAHsmlb5lQBo/ehkmPjK2rb7BUN29/1i5PQAAAAAAAAAA+msZvt9dOT+72NQ9PGGRvvZBmb3rDJ09AAAAAAAAAACm1mo+1jONP+UxlT5blQG/SOaWPoKujLwAAAAAAAAAAGAfDr6COpk/DJ0svrrH4r61Xvy9AxaiPAAAAAAAAAAAM64HPY8hE7xFG2g7o9y4POMdgb0u/Zc9AACAPwAAgD8z6uC8EtWlP2oaab1My+6+rYMdvUVRzbsAAAAAAAAAACZwVb73DCI/FuiEPloZor4HiAG9JC0zPgAAAAAAAAAA8wbfPa2Goj877Bk/CyX1vlIIkz0pbII+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQYF38umYcECUhpRSlIwBbJRL/YwBdJRHQJJAQAmzByl1fZQoaAZoCWgPQwimQ6fnnaVyQJSGlFKUaBVNQAFoFkdAkkBk3n6l+HV9lChoBmgJaA9DCJZCIJe4JW1AlIaUUpRoFU0gAWgWR0CSQR5vtMPCdX2UKGgGaAloD0MIWwndJXEfbkCUhpRSlGgVTUIBaBZHQJJCBM6BAfN1fZQoaAZoCWgPQwgtI/WeyuVuQJSGlFKUaBVNFQFoFkdAkkICy2QXAXV9lChoBmgJaA9DCP0xrU1jC21AlIaUUpRoFUv5aBZHQJJDFc5bQkZ1fZQoaAZoCWgPQwisNv+vevNxQJSGlFKUaBVNNAFoFkdAkkQHC4z7/HV9lChoBmgJaA9DCIS9iSH5WHBAlIaUUpRoFU0WAWgWR0CSRJgVGkN4dX2UKGgGaAloD0MIvwzGiER7cUCUhpRSlGgVTSMBaBZHQJJE8AvL5h11fZQoaAZoCWgPQwhuhbAay+VuQJSGlFKUaBVNMAFoFkdAkkUjmW+oL3V9lChoBmgJaA9DCHk+A+pNkXBAlIaUUpRoFUv7aBZHQJJGajk+5e91fZQoaAZoCWgPQwh3gZICixZuQJSGlFKUaBVNCQFoFkdAkkcf420iQnV9lChoBmgJaA9DCMrBbAKMlW9AlIaUUpRoFU0CAWgWR0CSR2BEroW6dX2UKGgGaAloD0MILlOT4A09cECUhpRSlGgVTQoBaBZHQJJHwKmbb111fZQoaAZoCWgPQwjXE10XfrlxQJSGlFKUaBVNQAFoFkdAkkh+/cnE23V9lChoBmgJaA9DCGrC9pPx4nFAlIaUUpRoFU0FAWgWR0CSSIfw7T2GdX2UKGgGaAloD0MIZoaNsn5VcECUhpRSlGgVS/xoFkdAkkiFGkN4JXV9lChoBmgJaA9DCNGUnX6QyHFAlIaUUpRoFU0MAWgWR0CSSNi7TUiIdX2UKGgGaAloD0MIDcNHxNS4cECUhpRSlGgVTRgBaBZHQJJJ+pkwvg51fZQoaAZoCWgPQwjBqQ8kr0lyQJSGlFKUaBVNAAFoFkdAkkoFt4zJp3V9lChoBmgJaA9DCGyYofHET3BAlIaUUpRoFU0pAWgWR0CSSypIMBp6dX2UKGgGaAloD0MIKEhsdw96cUCUhpRSlGgVTQwBaBZHQJJLaVcD8tR1fZQoaAZoCWgPQwjvVMA9TztxQJSGlFKUaBVNFQFoFkdAkkyADV6NVHV9lChoBmgJaA9DCInRcwvd4GxAlIaUUpRoFU0QAWgWR0CSTOyAQQMAdX2UKGgGaAloD0MIHOp3YSshckCUhpRSlGgVTR8BaBZHQJJNzU3GXHB1fZQoaAZoCWgPQwhwzojSHuJxQJSGlFKUaBVNLwFoFkdAkk6VERaouXV9lChoBmgJaA9DCCB7vftjQnBAlIaUUpRoFU0vAWgWR0CSUDzdDYywdX2UKGgGaAloD0MI0lPkELHocUCUhpRSlGgVTRsBaBZHQJJQSSOinHh1fZQoaAZoCWgPQwjRzf5Aub9uQJSGlFKUaBVNEwFoFkdAklCbQb+98XV9lChoBmgJaA9DCLGk3H0O/W1AlIaUUpRoFU0lAWgWR0CSUNf2saKldX2UKGgGaAloD0MIAMeePVfwcECUhpRSlGgVTQYBaBZHQJJQ9xiobXJ1fZQoaAZoCWgPQwjYLQJj/alsQJSGlFKUaBVNIAFoFkdAklHRegL7XXV9lChoBmgJaA9DCPMDV3lChHJAlIaUUpRoFU0iAWgWR0CSUd2JSBK+dX2UKGgGaAloD0MI3A2itaL3ckCUhpRSlGgVTQ0BaBZHQJJSyDSPU8V1fZQoaAZoCWgPQwib/uxHipByQJSGlFKUaBVNOgFoFkdAklLwssg+yXV9lChoBmgJaA9DCJ4oCYk0RHBAlIaUUpRoFU0NAWgWR0CSVCD3/PxAdX2UKGgGaAloD0MIzbBR1i9NckCUhpRSlGgVS+VoFkdAklRRKQJXyXV9lChoBmgJaA9DCA8r3PLRTXBAlIaUUpRoFU1AAWgWR0CSVGbbDdgwdX2UKGgGaAloD0MITmA6rVtWb0CUhpRSlGgVTRwBaBZHQJJUzh73PAx1fZQoaAZoCWgPQwhMx5xnbG1vQJSGlFKUaBVNIAFoFkdAklZoEB8x9HV9lChoBmgJaA9DCL5PVaEBeXJAlIaUUpRoFU0JAWgWR0CSV0Er5IpZdX2UKGgGaAloD0MI3h/vVavebUCUhpRSlGgVTRkBaBZHQJJtBRyfcvd1fZQoaAZoCWgPQwhYjSWsDX1tQJSGlFKUaBVNFgFoFkdAkm1HXmNipnV9lChoBmgJaA9DCImbU8lAWHNAlIaUUpRoFU0UAWgWR0CSbXc6vJRwdX2UKGgGaAloD0MIc9nonN9ScUCUhpRSlGgVTREBaBZHQJJufs9jgAJ1fZQoaAZoCWgPQwjn/upxn0hzQJSGlFKUaBVNGgFoFkdAkm7lNL127nV9lChoBmgJaA9DCGQipdk80XFAlIaUUpRoFU1PAWgWR0CSbwTNdJJ5dX2UKGgGaAloD0MIcTyfAXWucUCUhpRSlGgVTQUBaBZHQJJvcZ9/jKh1fZQoaAZoCWgPQwhxrIvb6KpwQJSGlFKUaBVNFAFoFkdAkm/SbpeNUHV9lChoBmgJaA9DCPdXj/vW+W5AlIaUUpRoFU0DAWgWR0CScKv4/NaAdX2UKGgGaAloD0MIn3WNlsO0cUCUhpRSlGgVTRQBaBZHQJJxeGL1mJ51fZQoaAZoCWgPQwiYTYBh+XJwQJSGlFKUaBVNEQFoFkdAknH3tnf2snV9lChoBmgJaA9DCOQPBp67xHBAlIaUUpRoFU0pAWgWR0CSckmEXcgydX2UKGgGaAloD0MI0GIpkq/Wa0CUhpRSlGgVTbQBaBZHQJJzStyPuG91fZQoaAZoCWgPQwinyYy3VW5yQJSGlFKUaBVNCgFoFkdAknOUNe+mFnV9lChoBmgJaA9DCOOpRxpcI2xAlIaUUpRoFUvzaBZHQJJzpy6tknV1fZQoaAZoCWgPQwh2jZYD/S5yQJSGlFKUaBVNBwFoFkdAknaBSYPXkHV9lChoBmgJaA9DCO0RaoaUJHFAlIaUUpRoFU0QAWgWR0CSdqCOFQEZdX2UKGgGaAloD0MIUb8LW7O1RECUhpRSlGgVS9NoFkdAkncgt8NQTHV9lChoBmgJaA9DCEsgJXbtpm9AlIaUUpRoFU0jAWgWR0CSd8d2gWaddX2UKGgGaAloD0MIY9AJoYPWbkCUhpRSlGgVTRABaBZHQJJ4qCf6Gg11fZQoaAZoCWgPQwg0R1Z+WTRxQJSGlFKUaBVNNAFoFkdAknmRX0XgtXV9lChoBmgJaA9DCLqhKTt9XHBAlIaUUpRoFU0JAWgWR0CSei77sOXmdX2UKGgGaAloD0MI5WGh1vSxckCUhpRSlGgVTTwBaBZHQJJ6PZyuIRB1fZQoaAZoCWgPQwiKHCJujiZwQJSGlFKUaBVNOAFoFkdAknqVZgXuV3V9lChoBmgJaA9DCDtxOV6BhXJAlIaUUpRoFU0GAWgWR0CSezaoddVvdX2UKGgGaAloD0MINUbrqOqEb0CUhpRSlGgVTSMBaBZHQJJ7sE8q4H51fZQoaAZoCWgPQwixbrw7MnRyQJSGlFKUaBVNFgFoFkdAknv/icXm/3V9lChoBmgJaA9DCGr3qwDfgUZAlIaUUpRoFU0AAWgWR0CSfD9mHxjKdX2UKGgGaAloD0MIf6KyYU0XcECUhpRSlGgVTR4BaBZHQJJ9XUI9kjJ1fZQoaAZoCWgPQwgBiSZQREJxQJSGlFKUaBVNPQFoFkdAkn5wHqu8snV9lChoBmgJaA9DCDbqIRqdbHFAlIaUUpRoFU0lAWgWR0CSgKm7J4jbdX2UKGgGaAloD0MI9IsS9JdZcUCUhpRSlGgVTRkBaBZHQJKA26reZXx1fZQoaAZoCWgPQwjReY1dIhtyQJSGlFKUaBVNEQFoFkdAkoEyntOVPnV9lChoBmgJaA9DCDhm2ZNA529AlIaUUpRoFU0uAWgWR0CSgSuXeFcqdX2UKGgGaAloD0MIHF2lu2vxckCUhpRSlGgVS/VoFkdAkoJXko4MnnV9lChoBmgJaA9DCIm1+BSA13JAlIaUUpRoFU0LAWgWR0CSgodkrf+CdX2UKGgGaAloD0MIP3CVJ9DpcECUhpRSlGgVTSUBaBZHQJKCqtxMnJF1fZQoaAZoCWgPQwhEFmni3RRxQJSGlFKUaBVNAQFoFkdAkoMkvf0mMXV9lChoBmgJaA9DCD4hO29jYnBAlIaUUpRoFU0QAWgWR0CSg0X9R77bdX2UKGgGaAloD0MI24e85epCYECUhpRSlGgVTegDaBZHQJKDyrxRVIZ1fZQoaAZoCWgPQwhwmj47YDZuQJSGlFKUaBVL+GgWR0CShD2XLNfPdX2UKGgGaAloD0MI6zh+qDSvcECUhpRSlGgVTQUBaBZHQJKETc/MW451fZQoaAZoCWgPQwipFabvdYBwQJSGlFKUaBVNGQFoFkdAkoR4g7o0RHV9lChoBmgJaA9DCJmCNc7mRXNAlIaUUpRoFUvqaBZHQJKFEZwXIlt1fZQoaAZoCWgPQwgt0VlmkcRvQJSGlFKUaBVNGgFoFkdAkoVUgbIcR3V9lChoBmgJaA9DCPRsVn0uX3FAlIaUUpRoFU0EAWgWR0CShpi83++/dX2UKGgGaAloD0MITmGlgkonckCUhpRSlGgVS/BoFkdAkofakuYhMnV9lChoBmgJaA9DCI50BkaeHXBAlIaUUpRoFU0fAWgWR0CSieO2AoXsdX2UKGgGaAloD0MIIorJG2Bkb0CUhpRSlGgVTSoBaBZHQJKKulxffGd1fZQoaAZoCWgPQwiZ1qaxvYFwQJSGlFKUaBVNLgFoFkdAkord3GGVRnV9lChoBmgJaA9DCIHoSZnUEXJAlIaUUpRoFU0IAWgWR0CSixeSjgyedX2UKGgGaAloD0MI7dgIxCt0cECUhpRSlGgVTRIBaBZHQJKLU7yQPqd1fZQoaAZoCWgPQwj43t+gvYRuQJSGlFKUaBVNCAFoFkdAkoul4HHFP3V9lChoBmgJaA9DCCRfCaREeGxAlIaUUpRoFU0xAWgWR0CSjD22G7BgdX2UKGgGaAloD0MITKq2m6DPcUCUhpRSlGgVS/hoFkdAkoxrgGbCrXV9lChoBmgJaA9DCGfTEcBNZ3BAlIaUUpRoFU0dAWgWR0CSjJLvCuU2dX2UKGgGaAloD0MIxLMEGYEucECUhpRSlGgVTQsBaBZHQJKNUKzAvct1fZQoaAZoCWgPQwgpJQSr6glwQJSGlFKUaBVL92gWR0CSjXTzd1uBdX2UKGgGaAloD0MIhBCQL2FhcECUhpRSlGgVTRgBaBZHQJKNi8Yht+F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c28de8a207ec9bfad4b0cbb3a4c8e1e466124fcdfe233d2b5b51ba040e0d9ca5
|
3 |
+
size 147764
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f00fb182560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00fb1825f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00fb182680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00fb182710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f00fb1827a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f00fb182830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00fb1828c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f00fb182950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00fb1829e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00fb182a70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00fb182b00>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f00fb1cf810>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVUgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAABTk/t5VlSd3K6xkOUBnXqnaVgnGShhKnLh8vYXRX+5ra/W8MHXmTT07YecaUXwpd57YKgT0GQhHCeqvBUf1BzW/sA2uAOsPXNBpwTVRGHodjGoWesZS4J0EoeSfjTw4+ixkhUGfabykqvyIe74usLiS/lMGBiWuFCF9niUqBWlKNqbvn2RGMOyDSDCmWEGliqQ8PEmvOpIrnoQWYH6P4CDB5F1W69hSk+7SZqRMz17/MHt/VU/PNuT72TNENmFuAgNvJLKf/ETMS2DC3QhxKE0ORmoGv2yqk9iRJCj+7YC0RGZbGfUsijJXMnthYRJQHGIveXEivGev9cgiuYpFKTFclp7cOyCVaXiWOaPFYva0cxvur9HEYIu6I8Aumo0u+Q8QK0unn4lw/d315DEMiEyj1feA0iPO3kupr0734bgWqZXCdcWl4SNiGfT04C0LAK1BPlsb0qSD5tF2SfhRkpQBFaCmwHhxfy9O2SBkRuVSaPzb8nzx0rVD68MioUneuhd9D+kBv6sfyw5uXZvJQX2/THcFXUmJbo75g9aIYcdLYMO8uo0Flc9tn/ig82BPbP0H38D4MUysDaPVv9tkOE3djjskEFlImELd5/zgv42YtzXYLK8UK52Yy9JPlNrkZg6fNXmRsSOXjEs58P7snS9G1BVXizofkXMyJV5jw7YXqQkFhMLKqHXLPwzuENVEU0rBm/4N40B41yUCb3BIRYUJ3UyUHdPNQZHIezN/YRQmpFRaDu8Majjd1zLG4vl3Jn/Tt4A0ZLMGMBSUHxpVMpKQFpbsem4n2BKUsAhND8T9mnDnCafhCtdbzEZiD1Y5pb4QRatvg2Wj/LDJ89imdjgYJZ9rGCrkiPrIJGWVK4Mvl3ZOrLaP86c/MipdGDt44q3Bpr4SXvrI09HPpo6tMq+oa4apWLPLMJFmot+JOw6t2MFCSSrxg2EU3MpvrjRyB5PSJ47Fvuvm4g9AXQIGwoiwRD+jWFLLFPUE8oydsiAqLmzSBsEmZBvwgJNFcWS8X9xXsVrh+G5JK1wdG42jsZuG1C/rEC+HQjq5fJ8YgdZuU1hzT6oqs0WlX2W4o2OEqwDryFnD9Gm/DxR32ycYROtr+Dyn+1uouTw0N/7Oj1NR1drfIAFfxr6URBlYgW2sGzSJNytEzaqyDN0imh78vrnuSY1wtzjhA8qgTCiMAFXYS9JnjyIBC/h8xDz9KenfDFx5UYIhrQolJOQ/LW1CRuEYKMBMwxLpucYPHroH5hFgzID8g9xL3/22r0wtBMkb57m9f/2CSA0xyU1Lh6ak0O5EnV6kYjKErwCSncuwOzmqKFjeqrS6pmb/w+sCUyCGexWTkfDxmuu/sfFI7z/Vy4lIJDf6c+FNfgjWI/yXM9nUlblIFPanbj3GT5r8JzHCriYVvjAWN8raQotnLYQ55M6KTdShZdnkSt1Hw+atHXK9R9BjNc3b7Pv1Ghwoot3kX0hZPc6fUNwXkgN4OFjt26xHdgyuJuwxZBe1C1n3czTEZfRRX/wGncDC5WpBEChSfYVR02h1aMvVxensrWgePJrnXSDdAeUHFJZlRDjIQhGPtGMjQ+JQtaZqDuXibqQ1qC6LGLHBQ+3uJuIWGTSmNZsFdFnpbhCWfZlet32nZMWSRExRkoLu19X7DJYH+EDS+m5LkqnLwmvZC5GBu4pqTczsVd1vsMyrG7wHZsEPQfS+GbgxRjFkssydAf1rI8kLWQX6UYGmlo/8r+ral+EbBdq4o/MMrekpaidBlLjZLuef8fHgcbQE4Xvmmc2jGBISFdD+HCgEJqlF/TpiWev9ky9bIGSh3bR1/JEePyAFenwmWaE7B1AdPP1SrXMchuiE51/OEPzRlXlo1k05ThXblSUvC6MxxVGkD5NbayYbQkorWlcCKMYZXi4gt1erT4NN/LSDkHBznTedxwdxSEjZ+hGNVvZGbkdLda+Cs7xXdQQx0EyHHdqsDHPxyWwhM+/WjUvtXgJ8PNUnk/whsJiRopU7gEzT/gzeDJ6pZhzXQCvT8euT+cM13ZuuBPz5TSl7BhPFvyzx5tK1ntUwthdfmLv1s6X68koUxOQ5Qf/D4QrkyLUrpS8m6Cb5QOvdqm93xp6kXnrbbD0fO3FvQq60NX7nQUTbfvGthaUhtEPSDdtxPJVR8NGZZzqRpq5MeSSuQrZRaEDlKKkIpy8QX1pnGNOmW1ozl0Mr/aOunrZn32reRZoT37Hv0geMbANE8aD7p4ZjcTvcZamW3ftU3OyBTP8TIPkSWRg6ZyvpdPvpZnbs7Ss2v8X+3Rv/jzWkkZxvN7vRW+z7fdyNXXWw6679653oxn3jVT48qaURmaZAqmnUB05QZpnPXob8GCKu42ZQiQTYpaGkvZOGUs8h64p1EA6c7Pns7LtyMG6VSwVTh9QXSqF7wUghmgxf1JSK13TnywoZ6Fvxf/vDj86CFCs0TaNdIkZ4zzdrK/KgriZ5tsctvZk4ieDoUbA9FLk1D7JwA8dEhzgg+KCwYKrMLtxlq3gMDWdYcrRRM0S8Q+yI149P6U9rzkV2QpZGCawprikyUQ7zgG5MdG094211lIjvqKOjS8ADqdHG23+VCI5pZDUd9C1BB6kJiHfRKswQl4jt6H5ssmsVJBuwF3zTwDz2wfrFya4BYY5HzedHcbnkScYvZ/XBUfplACs4BrZu+VWn8gvIbKAwOumXezI5GmOJRgc42aZiYduKkv3qg7W4Ir3mB0D6Ozkwta8gJFoLv5hcefotqfxBXw1avI7oSMqLnm/I5S5CoC4NeErxvY2bc46W0IKEzbrBTvEjCni7QRhqks3ONQ3qrOHn//PxBh4dS3rU6h/D9GWEMaMQjtXvd8rJTEhArkzADBE45wdUCfT7SkBE9bF9HHI+iKak32A9FI6bTfbsj5T5uVobD/qpg+C2obDMIYYkMP08tK2EpDRYluvzJJT7Sf5Sx8gVD7E2mUWkwtSStDlWqthYHfQ7NBTpfrOzfFLgyLWd5hbfS00acygC1pKm1MBoVc06ht+IAlMBEAoN5GWkr5pwkJvCQbkqRniD214nBqQIHVZPR+BdUZ3zCJ6rM6kFE99j57flveNZX5o4V7euPd93Ir/X2+LVSFrEHLAwndzPBcEK9102+Y0OcGHu5+qRr+FNqEUExDFOW5iAHXvSOvSFZ3GVt0tYNGL/Fwic1dzt6c96mEJ/Qs30hoMcF2QH9vujdHrrIO7RozxN7O0AZ2j8mZRqfDkhBbodC5cg0LBlDYj5naP7JtPwfCJCXMltC85uimXcLdVhueIn8n6Pv0kQxqFGVusm9neruB3nlGVGAxoEAzojA6UdJRijANwb3OUSxR1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": "RandomState(MT19937)"
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653951669.8778193,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzT6yvTHilj99c5e+rSL0vkhyy72mjyK+AAAAAAAAAABAbj2+80E8PzRehL0jmuC+KW1XviYtVT0AAAAAAAAAAEpbrD425Rg/uUeRvka3574Aavw9K0o2vgAAAAAAAAAAAC4IPK4JgLr4JC80c6FHLxozYDufe5izAACAPwAAgD+azA4+amgyPh4ghL60IYa+dS52vVZto7wAAAAAAAAAABu8tr7NbUM/hkxWPlFLgr7wf0O+4mQpPgAAAAAAAAAAAFR2PDYURrwHUp6769WWPFnsrz07oHa9AACAPwAAgD+ANhc94N6xP+Z/Jj4TCpq+dXTPPJtM3T0AAAAAAAAAAHsmlb5lQBo/ehkmPjK2rb7BUN29/1i5PQAAAAAAAAAA+msZvt9dOT+72NQ9PGGRvvZBmb3rDJ09AAAAAAAAAACm1mo+1jONP+UxlT5blQG/SOaWPoKujLwAAAAAAAAAAGAfDr6COpk/DJ0svrrH4r61Xvy9AxaiPAAAAAAAAAAAM64HPY8hE7xFG2g7o9y4POMdgb0u/Zc9AACAPwAAgD8z6uC8EtWlP2oaab1My+6+rYMdvUVRzbsAAAAAAAAAACZwVb73DCI/FuiEPloZor4HiAG9JC0zPgAAAAAAAAAA8wbfPa2Goj877Bk/CyX1vlIIkz0pbII+AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQYF38umYcECUhpRSlIwBbJRL/YwBdJRHQJJAQAmzByl1fZQoaAZoCWgPQwimQ6fnnaVyQJSGlFKUaBVNQAFoFkdAkkBk3n6l+HV9lChoBmgJaA9DCJZCIJe4JW1AlIaUUpRoFU0gAWgWR0CSQR5vtMPCdX2UKGgGaAloD0MIWwndJXEfbkCUhpRSlGgVTUIBaBZHQJJCBM6BAfN1fZQoaAZoCWgPQwgtI/WeyuVuQJSGlFKUaBVNFQFoFkdAkkICy2QXAXV9lChoBmgJaA9DCP0xrU1jC21AlIaUUpRoFUv5aBZHQJJDFc5bQkZ1fZQoaAZoCWgPQwisNv+vevNxQJSGlFKUaBVNNAFoFkdAkkQHC4z7/HV9lChoBmgJaA9DCIS9iSH5WHBAlIaUUpRoFU0WAWgWR0CSRJgVGkN4dX2UKGgGaAloD0MIvwzGiER7cUCUhpRSlGgVTSMBaBZHQJJE8AvL5h11fZQoaAZoCWgPQwhuhbAay+VuQJSGlFKUaBVNMAFoFkdAkkUjmW+oL3V9lChoBmgJaA9DCHk+A+pNkXBAlIaUUpRoFUv7aBZHQJJGajk+5e91fZQoaAZoCWgPQwh3gZICixZuQJSGlFKUaBVNCQFoFkdAkkcf420iQnV9lChoBmgJaA9DCMrBbAKMlW9AlIaUUpRoFU0CAWgWR0CSR2BEroW6dX2UKGgGaAloD0MILlOT4A09cECUhpRSlGgVTQoBaBZHQJJHwKmbb111fZQoaAZoCWgPQwjXE10XfrlxQJSGlFKUaBVNQAFoFkdAkkh+/cnE23V9lChoBmgJaA9DCGrC9pPx4nFAlIaUUpRoFU0FAWgWR0CSSIfw7T2GdX2UKGgGaAloD0MIZoaNsn5VcECUhpRSlGgVS/xoFkdAkkiFGkN4JXV9lChoBmgJaA9DCNGUnX6QyHFAlIaUUpRoFU0MAWgWR0CSSNi7TUiIdX2UKGgGaAloD0MIDcNHxNS4cECUhpRSlGgVTRgBaBZHQJJJ+pkwvg51fZQoaAZoCWgPQwjBqQ8kr0lyQJSGlFKUaBVNAAFoFkdAkkoFt4zJp3V9lChoBmgJaA9DCGyYofHET3BAlIaUUpRoFU0pAWgWR0CSSypIMBp6dX2UKGgGaAloD0MIKEhsdw96cUCUhpRSlGgVTQwBaBZHQJJLaVcD8tR1fZQoaAZoCWgPQwjvVMA9TztxQJSGlFKUaBVNFQFoFkdAkkyADV6NVHV9lChoBmgJaA9DCInRcwvd4GxAlIaUUpRoFU0QAWgWR0CSTOyAQQMAdX2UKGgGaAloD0MIHOp3YSshckCUhpRSlGgVTR8BaBZHQJJNzU3GXHB1fZQoaAZoCWgPQwhwzojSHuJxQJSGlFKUaBVNLwFoFkdAkk6VERaouXV9lChoBmgJaA9DCCB7vftjQnBAlIaUUpRoFU0vAWgWR0CSUDzdDYywdX2UKGgGaAloD0MI0lPkELHocUCUhpRSlGgVTRsBaBZHQJJQSSOinHh1fZQoaAZoCWgPQwjRzf5Aub9uQJSGlFKUaBVNEwFoFkdAklCbQb+98XV9lChoBmgJaA9DCLGk3H0O/W1AlIaUUpRoFU0lAWgWR0CSUNf2saKldX2UKGgGaAloD0MIAMeePVfwcECUhpRSlGgVTQYBaBZHQJJQ9xiobXJ1fZQoaAZoCWgPQwjYLQJj/alsQJSGlFKUaBVNIAFoFkdAklHRegL7XXV9lChoBmgJaA9DCPMDV3lChHJAlIaUUpRoFU0iAWgWR0CSUd2JSBK+dX2UKGgGaAloD0MI3A2itaL3ckCUhpRSlGgVTQ0BaBZHQJJSyDSPU8V1fZQoaAZoCWgPQwib/uxHipByQJSGlFKUaBVNOgFoFkdAklLwssg+yXV9lChoBmgJaA9DCJ4oCYk0RHBAlIaUUpRoFU0NAWgWR0CSVCD3/PxAdX2UKGgGaAloD0MIzbBR1i9NckCUhpRSlGgVS+VoFkdAklRRKQJXyXV9lChoBmgJaA9DCA8r3PLRTXBAlIaUUpRoFU1AAWgWR0CSVGbbDdgwdX2UKGgGaAloD0MITmA6rVtWb0CUhpRSlGgVTRwBaBZHQJJUzh73PAx1fZQoaAZoCWgPQwhMx5xnbG1vQJSGlFKUaBVNIAFoFkdAklZoEB8x9HV9lChoBmgJaA9DCL5PVaEBeXJAlIaUUpRoFU0JAWgWR0CSV0Er5IpZdX2UKGgGaAloD0MI3h/vVavebUCUhpRSlGgVTRkBaBZHQJJtBRyfcvd1fZQoaAZoCWgPQwhYjSWsDX1tQJSGlFKUaBVNFgFoFkdAkm1HXmNipnV9lChoBmgJaA9DCImbU8lAWHNAlIaUUpRoFU0UAWgWR0CSbXc6vJRwdX2UKGgGaAloD0MIc9nonN9ScUCUhpRSlGgVTREBaBZHQJJufs9jgAJ1fZQoaAZoCWgPQwjn/upxn0hzQJSGlFKUaBVNGgFoFkdAkm7lNL127nV9lChoBmgJaA9DCGQipdk80XFAlIaUUpRoFU1PAWgWR0CSbwTNdJJ5dX2UKGgGaAloD0MIcTyfAXWucUCUhpRSlGgVTQUBaBZHQJJvcZ9/jKh1fZQoaAZoCWgPQwhxrIvb6KpwQJSGlFKUaBVNFAFoFkdAkm/SbpeNUHV9lChoBmgJaA9DCPdXj/vW+W5AlIaUUpRoFU0DAWgWR0CScKv4/NaAdX2UKGgGaAloD0MIn3WNlsO0cUCUhpRSlGgVTRQBaBZHQJJxeGL1mJ51fZQoaAZoCWgPQwiYTYBh+XJwQJSGlFKUaBVNEQFoFkdAknH3tnf2snV9lChoBmgJaA9DCOQPBp67xHBAlIaUUpRoFU0pAWgWR0CSckmEXcgydX2UKGgGaAloD0MI0GIpkq/Wa0CUhpRSlGgVTbQBaBZHQJJzStyPuG91fZQoaAZoCWgPQwinyYy3VW5yQJSGlFKUaBVNCgFoFkdAknOUNe+mFnV9lChoBmgJaA9DCOOpRxpcI2xAlIaUUpRoFUvzaBZHQJJzpy6tknV1fZQoaAZoCWgPQwh2jZYD/S5yQJSGlFKUaBVNBwFoFkdAknaBSYPXkHV9lChoBmgJaA9DCO0RaoaUJHFAlIaUUpRoFU0QAWgWR0CSdqCOFQEZdX2UKGgGaAloD0MIUb8LW7O1RECUhpRSlGgVS9NoFkdAkncgt8NQTHV9lChoBmgJaA9DCEsgJXbtpm9AlIaUUpRoFU0jAWgWR0CSd8d2gWaddX2UKGgGaAloD0MIY9AJoYPWbkCUhpRSlGgVTRABaBZHQJJ4qCf6Gg11fZQoaAZoCWgPQwg0R1Z+WTRxQJSGlFKUaBVNNAFoFkdAknmRX0XgtXV9lChoBmgJaA9DCLqhKTt9XHBAlIaUUpRoFU0JAWgWR0CSei77sOXmdX2UKGgGaAloD0MI5WGh1vSxckCUhpRSlGgVTTwBaBZHQJJ6PZyuIRB1fZQoaAZoCWgPQwiKHCJujiZwQJSGlFKUaBVNOAFoFkdAknqVZgXuV3V9lChoBmgJaA9DCDtxOV6BhXJAlIaUUpRoFU0GAWgWR0CSezaoddVvdX2UKGgGaAloD0MINUbrqOqEb0CUhpRSlGgVTSMBaBZHQJJ7sE8q4H51fZQoaAZoCWgPQwixbrw7MnRyQJSGlFKUaBVNFgFoFkdAknv/icXm/3V9lChoBmgJaA9DCGr3qwDfgUZAlIaUUpRoFU0AAWgWR0CSfD9mHxjKdX2UKGgGaAloD0MIf6KyYU0XcECUhpRSlGgVTR4BaBZHQJJ9XUI9kjJ1fZQoaAZoCWgPQwgBiSZQREJxQJSGlFKUaBVNPQFoFkdAkn5wHqu8snV9lChoBmgJaA9DCDbqIRqdbHFAlIaUUpRoFU0lAWgWR0CSgKm7J4jbdX2UKGgGaAloD0MI9IsS9JdZcUCUhpRSlGgVTRkBaBZHQJKA26reZXx1fZQoaAZoCWgPQwjReY1dIhtyQJSGlFKUaBVNEQFoFkdAkoEyntOVPnV9lChoBmgJaA9DCDhm2ZNA529AlIaUUpRoFU0uAWgWR0CSgSuXeFcqdX2UKGgGaAloD0MIHF2lu2vxckCUhpRSlGgVS/VoFkdAkoJXko4MnnV9lChoBmgJaA9DCIm1+BSA13JAlIaUUpRoFU0LAWgWR0CSgodkrf+CdX2UKGgGaAloD0MIP3CVJ9DpcECUhpRSlGgVTSUBaBZHQJKCqtxMnJF1fZQoaAZoCWgPQwhEFmni3RRxQJSGlFKUaBVNAQFoFkdAkoMkvf0mMXV9lChoBmgJaA9DCD4hO29jYnBAlIaUUpRoFU0QAWgWR0CSg0X9R77bdX2UKGgGaAloD0MI24e85epCYECUhpRSlGgVTegDaBZHQJKDyrxRVIZ1fZQoaAZoCWgPQwhwmj47YDZuQJSGlFKUaBVL+GgWR0CShD2XLNfPdX2UKGgGaAloD0MI6zh+qDSvcECUhpRSlGgVTQUBaBZHQJKETc/MW451fZQoaAZoCWgPQwipFabvdYBwQJSGlFKUaBVNGQFoFkdAkoR4g7o0RHV9lChoBmgJaA9DCJmCNc7mRXNAlIaUUpRoFUvqaBZHQJKFEZwXIlt1fZQoaAZoCWgPQwgt0VlmkcRvQJSGlFKUaBVNGgFoFkdAkoVUgbIcR3V9lChoBmgJaA9DCPRsVn0uX3FAlIaUUpRoFU0EAWgWR0CShpi83++/dX2UKGgGaAloD0MITmGlgkonckCUhpRSlGgVS/BoFkdAkofakuYhMnV9lChoBmgJaA9DCI50BkaeHXBAlIaUUpRoFU0fAWgWR0CSieO2AoXsdX2UKGgGaAloD0MIIorJG2Bkb0CUhpRSlGgVTSoBaBZHQJKKulxffGd1fZQoaAZoCWgPQwiZ1qaxvYFwQJSGlFKUaBVNLgFoFkdAkord3GGVRnV9lChoBmgJaA9DCIHoSZnUEXJAlIaUUpRoFU0IAWgWR0CSixeSjgyedX2UKGgGaAloD0MI7dgIxCt0cECUhpRSlGgVTRIBaBZHQJKLU7yQPqd1fZQoaAZoCWgPQwj43t+gvYRuQJSGlFKUaBVNCAFoFkdAkoul4HHFP3V9lChoBmgJaA9DCCRfCaREeGxAlIaUUpRoFU0xAWgWR0CSjD22G7BgdX2UKGgGaAloD0MITKq2m6DPcUCUhpRSlGgVS/hoFkdAkoxrgGbCrXV9lChoBmgJaA9DCGfTEcBNZ3BAlIaUUpRoFU0dAWgWR0CSjJLvCuU2dX2UKGgGaAloD0MIxLMEGYEucECUhpRSlGgVTQsBaBZHQJKNUKzAvct1fZQoaAZoCWgPQwgpJQSr6glwQJSGlFKUaBVL92gWR0CSjXTzd1uBdX2UKGgGaAloD0MIhBCQL2FhcECUhpRSlGgVTRgBaBZHQJKNi8Yht+F1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9f43cbd92af4b14f55a4d578197321377d18384bfd8af7f2ff03de3a694cfba
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0b66dfa6aea79cec9adfaa52ec6589a32b3d68bbf8f9ec9bfc2b6655202b248
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a1ebb86283c04e34c2fabbb5200be4dd61219c718f3cf47059beb4778aa9c94
|
3 |
+
size 221021
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.38913078168224, "std_reward": 19.231709772386953, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-30T23:31:25.175225"}
|