|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- google/gemma-2-2b-it |
|
--- |
|
|
|
# General Preference Representation Model (GPM) |
|
|
|
+ **Authors** (* indicates equal contribution) |
|
|
|
Yifan Zhang*, Ge Zhang*, Yue Wu*, Kangping Xu, Quanquan Gu |
|
|
|
+ **Paper**: [General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197)](https://arxiv.org/abs/2410.02197) |
|
+ **As Huggingface Daily Papers**: [https://huggingface.co/papers/2410.02197](https://huggingface.co/papers/2410.02197) |
|
+ **Code Repository**: [General-Preference-Model (https://github.com/general-preference/general-preference-model)](https://github.com/general-preference/general-preference-model) |
|
+ **Dataset**: [natolambert/skywork-preferences-80k-v0.1-cleaned](https://huggingface.co/datasets/natolambert/skywork-preferences-80k-v0.1-cleaned) |
|
+ **Base Model**: [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) |
|
|
|
## Overview |
|
|
|
The General Preference Representation Model (GPM) improves preference-based reward modeling by embedding responses into a latent space to efficiently capture complex, intransitive human preferences. GPM achieves linear query complexity, allowing for expressive preference representation, and outperforms traditional Bradley-Terry (BT) reward models, particularly in handling cyclic preferences. |
|
|
|
## Key Features |
|
- **Preference Representation Learning**: Embeds responses in a multi-dimensional latent space to model intricate human preferences, including cyclic and intransitive structures. |
|
- **Efficient Querying**: Reduces computational complexity to O(K), compared to O(K²) for traditional methods, making GPM scalable for large response sets. |
|
- **General Preference Optimization (GPO)**: Introduces a preference score that integrates with reinforcement learning methods to optimize policy alignment with human preferences. |
|
|
|
## Evaluation |
|
|
|
The GPM is evaluated using the [RewardBench](https://github.com/allenai/reward-bench) leaderboard, showing significant improvements over the BT model, with a performance margin of up to 2.31%. GPM also excels in modeling cyclic preferences, achieving 100% accuracy on cyclic datasets. |
|
|
|
## Usage |
|
|
|
To use this model, please refer to the [General Preference Model Code Repository](https://github.com/general-preference/general-preference-model). The repository includes detailed instructions for finetuning, evaluation, and integration of the GPM with downstream tasks. Below is an example code snippet: |
|
|
|
```python |
|
from typing import Optional, List, Dict |
|
import torch |
|
import torch.nn as nn |
|
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer |
|
import os |
|
from safetensors.torch import load_file |
|
from huggingface_hub import snapshot_download |
|
|
|
def get_tokenizer(pretrain, model, padding_side="left", use_fast=True): |
|
tokenizer = AutoTokenizer.from_pretrained(pretrain, trust_remote_code=True, use_fast=use_fast) |
|
tokenizer.padding_side = padding_side |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return tokenizer |
|
|
|
def get_reward_model(base_causal_model, base_llm_model, value_head_dim: int, add_prompt_head: bool, is_general_preference: bool=False): |
|
class CustomRewardModel(base_causal_model): |
|
|
|
def __init__(self, config: AutoConfig): |
|
super().__init__(config) |
|
setattr(self, self.base_model_prefix, base_llm_model(config)) |
|
self.is_general_preference = is_general_preference |
|
|
|
self.value_head = nn.Linear(config.hidden_size, value_head_dim, bias=False) |
|
if add_prompt_head: |
|
self.prompt_head = nn.Linear(config.hidden_size, value_head_dim // 2, bias=False) |
|
|
|
def custom_forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
return_output=False, |
|
) -> torch.Tensor: |
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
outputs = getattr(self, self.base_model_prefix)( |
|
input_ids, attention_mask=attention_mask, position_ids=position_ids |
|
) |
|
last_hidden_states = outputs["last_hidden_state"] |
|
|
|
if not self.is_general_preference: |
|
values = self.value_head(last_hidden_states).squeeze(-1) |
|
# left padding in training mode |
|
if self.training: |
|
reward = values[:, -1] |
|
else: |
|
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1, keepdim=True) |
|
reward = values.gather(dim=1, index=eos_indices).squeeze(1) |
|
if return_output: |
|
return reward, outputs |
|
else: |
|
return reward, None |
|
else: |
|
values = self.value_head(last_hidden_states) |
|
# left padding in training mode |
|
if self.training: |
|
reward = values[:, -1, :] |
|
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim] |
|
else: |
|
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1) |
|
eos_indices = eos_indices.unsqueeze(1) # Change shape to [batch_size, 1] |
|
reward_list = [] |
|
for dim in range(self.value_head.out_features): |
|
reward_list.append(values[:,:,dim].gather(dim=1, index=eos_indices)) |
|
reward = torch.cat(reward_list, dim=1) |
|
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim] |
|
if return_output: |
|
return reward, outputs |
|
else: |
|
return reward, None |
|
|
|
def create_skew_symmetric_block_matrix(self, dim, device, dtype, prompt_hidden_states): |
|
""" |
|
Create a batch of skew-symmetric block matrices where each matrix is data-dependent on |
|
the corresponding prompt_hidden_states. Only the relevant block diagonal parts are generated. |
|
|
|
Args: |
|
- dim: Dimension of the square matrix (must be even). |
|
- prompt_hidden_states: Tensor of shape [batch_size, hidden_dim]. |
|
|
|
Returns: |
|
- batch_R_matrices: Tensor of shape [batch_size, dim, dim], with skew-symmetric block entries. |
|
""" |
|
if hasattr(self, 'prompt_head'): |
|
batch_size = prompt_hidden_states.shape[0] |
|
|
|
# Ensure that dim is even, as we're creating blocks of size 2x2 |
|
assert dim % 2 == 0, "dim must be even for skew-symmetric block generation" |
|
|
|
# Pass through the linear layer to get the block diagonal entries (half of the matrix's off-diagonal blocks) |
|
block_values = self.prompt_head(prompt_hidden_states).view(batch_size, dim // 2) |
|
block_values = torch.softmax(block_values, dim=-1) |
|
|
|
# Create a batch of zero matrices [batch_size, dim, dim] |
|
batch_R_matrices = torch.zeros((batch_size, dim, dim), device=device, dtype=dtype) |
|
|
|
# Fill only the block diagonal entries with the learned values |
|
for i in range(0, dim, 2): |
|
batch_R_matrices[:, i, i + 1] = -block_values[:, i // 2] |
|
batch_R_matrices[:, i + 1, i] = block_values[:, i // 2] # Skew-symmetric condition |
|
else: |
|
raise AttributeError("prompt_head is not defined. Ensure 'add_prompt_head' is set to True during initialization.") |
|
|
|
return batch_R_matrices |
|
|
|
return CustomRewardModel |
|
|
|
def generate_high_dim_result_with_prompt(model, value_head_dim, chosen_reward, rejected_reward, prompt_hidden_states): |
|
R_matrix = model.create_skew_symmetric_block_matrix(value_head_dim, chosen_reward.device, chosen_reward.dtype, prompt_hidden_states) |
|
if chosen_reward.device == rejected_reward.device == R_matrix.device: |
|
transformed_chosen = torch.bmm(chosen_reward.view(chosen_reward.shape[0], 1, value_head_dim), R_matrix.transpose(1, 2)) |
|
result = torch.bmm(transformed_chosen, rejected_reward.view(rejected_reward.shape[0], value_head_dim, 1)) |
|
result = result.view(chosen_reward.shape[0]) |
|
return result |
|
|
|
class GPMPipeline: |
|
def __init__(self, model_name_or_path, device=torch.device("cuda:0"), is_general_preference: bool=True, bf16: bool=True, truncation: bool=True, max_length: int=4096, padding: bool=True, tau: float=0.1): |
|
self.device = device |
|
self.is_general_preference = is_general_preference |
|
|
|
self.truncation = truncation |
|
self.max_length = max_length |
|
self.padding = padding |
|
self.tau = tau |
|
|
|
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
config._attn_implementation = "flash_attention_2" |
|
base_class = AutoModel._model_mapping[type(config)] |
|
base_causal_class = AutoModelForCausalLM._model_mapping.get(type(config), None) |
|
|
|
try: |
|
dir_path = snapshot_download(repo_id=model_name_or_path) |
|
except Exception as e: |
|
dir_path = model_name_or_path |
|
combined_weights = {} |
|
for filename in os.listdir(dir_path): |
|
if filename.endswith(".safetensors"): |
|
file_path = os.path.join(dir_path, filename) |
|
weights = load_file(file_path) |
|
combined_weights.update(weights) |
|
|
|
if "value_head.weight" in combined_weights: |
|
self.value_head_dim = combined_weights["value_head.weight"].shape[0] |
|
|
|
self.add_prompt_head = True if "prompt_head.weight" in combined_weights else False |
|
|
|
cls_class = get_reward_model(base_causal_class, base_class, add_prompt_head=self.add_prompt_head, value_head_dim=self.value_head_dim, is_general_preference=is_general_preference) |
|
|
|
# configure model |
|
self.model = cls_class.from_pretrained( |
|
model_name_or_path, |
|
config=config, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16 if bf16 else "auto", |
|
) |
|
|
|
# configure tokenizer |
|
self.tokenizer = get_tokenizer(model_name_or_path, self.model, "left", use_fast=True) |
|
self.tokenizer.truncation_side = "right" |
|
|
|
# prepare model |
|
self.model.to(device) |
|
self.model.eval() |
|
|
|
def __call__(self, samples: List[List[Dict[str, str]]], return_prompt=False): |
|
input_texts = [self.tokenizer.apply_chat_template(sample, tokenize=False) for sample in samples] |
|
|
|
inputs = self.tokenizer( |
|
input_texts, |
|
truncation=True, |
|
max_length=self.max_length, |
|
padding=True, |
|
return_tensors="pt", |
|
).to(self.device) |
|
|
|
inputs["input_ids"][:, -1] = self.tokenizer.eos_token_id |
|
inputs["attention_mask"][:, -1] = 1 |
|
|
|
with torch.no_grad(): |
|
rewards, outputs = self.model.custom_forward(**inputs, return_output=return_prompt) |
|
|
|
chosen_response_len_list = [] |
|
if return_prompt: |
|
prompt_texts = [self.tokenizer.apply_chat_template([sample[0]], tokenize=False) for sample in samples] |
|
for i in range(len(input_texts)): |
|
prompt_token = self.tokenizer( |
|
prompt_texts[i], |
|
max_length=self.max_length, |
|
padding=False, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
chosen_token = self.tokenizer( |
|
input_texts[i], |
|
max_length=self.max_length, |
|
padding=False, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
chosen_response_len = chosen_token["attention_mask"].sum() - prompt_token["attention_mask"].sum() |
|
chosen_response_len_list.append(chosen_response_len) |
|
chosen_response_len = torch.tensor(chosen_response_len_list).view(-1, 1).to(self.device) |
|
if return_prompt: |
|
chosen_last_hidden_states = outputs["last_hidden_state"] |
|
prompt_end_index = chosen_last_hidden_states.size(1) - chosen_response_len - 1 |
|
prompt_end_index_expanded = prompt_end_index.unsqueeze(-1).expand(-1, -1, chosen_last_hidden_states.size(-1)) |
|
prompt_hidden_state = torch.gather(chosen_last_hidden_states, dim=1, index=prompt_end_index_expanded).squeeze(1) |
|
return rewards, prompt_hidden_state |
|
else: |
|
return rewards |
|
|
|
|
|
prompt_text = "Describe the importance of reading books in today's digital age." |
|
response1 = "Books remain crucial in the digital era, offering in-depth knowledge and fostering critical thinking. They provide a unique, immersive experience that digital media can't replicate, contributing significantly to personal and intellectual growth." |
|
response2 = "Books are still useful for learning new things. They help you relax and can be a good break from screens." |
|
|
|
context1 = [ |
|
{"role": "user", "content": prompt_text}, |
|
{"role": "assistant", "content": response1} |
|
] |
|
|
|
context2 = [ |
|
{"role": "user", "content": prompt_text}, |
|
{"role": "assistant", "content": response2} |
|
] |
|
|
|
rm = GPMPipeline("general-preference/GPM-Gemma-2-2B") |
|
|
|
reward1, prompt_hidden_state = rm([context1], return_prompt=True) |
|
reward2 = rm([context2]) |
|
|
|
result = generate_high_dim_result_with_prompt(rm.model, rm.value_head_dim, reward1, reward2, prompt_hidden_state) |
|
# score = result / rm.tau |
|
|
|
result_batch = result.float().cpu().detach().numpy().tolist() |
|
|
|
results = [] |
|
[ |
|
results.append(1) if result > 0 else results.append(0) |
|
for result in result_batch |
|
] |
|
|
|
print(result_batch) |
|
``` |
|
|
|
## Citation |
|
|
|
If you find this work useful for your research, please consider citing: |
|
|
|
``` |
|
@article{zhang2024general, |
|
title={General Preference Modeling with Preference Representations for Aligning Language Models}, |
|
author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan}, |
|
journal={arXiv preprint arXiv:2410.02197}, |
|
year={2024} |
|
} |
|
``` |