librarian-bot's picture
Librarian Bot: Add base_model information to model
ac5d7c3
|
raw
history blame
2.39 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: microsoft/deberta-base
model-index:
  - name: deberta-base-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          args: conll2003
        metrics:
          - type: precision
            value: 0.9563020492186769
            name: Precision
          - type: recall
            value: 0.9652436720816018
            name: Recall
          - type: f1
            value: 0.9607520564042303
            name: F1
          - type: accuracy
            value: 0.9899205302077261
            name: Accuracy

deberta-base-finetuned-ner

This model is a fine-tuned version of microsoft/deberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0501
  • Precision: 0.9563
  • Recall: 0.9652
  • F1: 0.9608
  • Accuracy: 0.9899

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1419 1.0 878 0.0628 0.9290 0.9288 0.9289 0.9835
0.0379 2.0 1756 0.0466 0.9456 0.9567 0.9511 0.9878
0.0176 3.0 2634 0.0473 0.9539 0.9575 0.9557 0.9890
0.0098 4.0 3512 0.0468 0.9570 0.9635 0.9603 0.9896
0.0043 5.0 4390 0.0501 0.9563 0.9652 0.9608 0.9899

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.0+cu111
  • Datasets 1.12.1
  • Tokenizers 0.10.3