gchhablani commited on
Commit
5d1483f
1 Parent(s): cbfa692

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: XX.XX
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Hungarian
@@ -87,7 +87,7 @@ processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu
87
  model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\–\\…]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
@@ -117,8 +117,8 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
118
  ```
119
 
120
- **Test Result**: XX.XX %
121
 
122
  ## Training
123
 
124
- The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-hungarian-asr.ipynb). The notebook containing the code used for evaluation can be found [here]().
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 46.75
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Hungarian
 
87
  model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
 
117
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
118
  ```
119
 
120
+ **Test Result**: 46.75 %
121
 
122
  ## Training
123
 
124
+ The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-hungarian-asr.ipynb). The notebook containing the code used for evaluation can be found [here](https://colab.research.google.com/drive/1esYvWS6IkTQFfRqi_b6lAJEycuecInHE?usp=sharing).