Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/unideeplearning/polibert_sa/README.md
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: it
|
3 |
+
tags:
|
4 |
+
- sentiment
|
5 |
+
- Italian
|
6 |
+
license: MIT
|
7 |
+
widget:
|
8 |
+
- text: 'Giuseppe Rossi è un ottimo politico'
|
9 |
+
---
|
10 |
+
|
11 |
+
# 🤗 + polibert_SA - POLItic BERT based Sentiment Analysis
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
|
15 |
+
This model performs sentiment analysis on Italian political twitter sentences. It was trained starting from an instance of "bert-base-italian-uncased-xxl" and fine-tuned on an Italian dataset of tweets. You can try it out at https://www.unideeplearning.com/twitter_sa/ (in italian!)
|
16 |
+
|
17 |
+
#### Hands-on
|
18 |
+
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("unideeplearning/polibert_sa")
|
25 |
+
model = AutoModelForSequenceClassification.from_pretrained("unideeplearning/polibert_sa")
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
text = "Giuseppe Rossi è un pessimo politico"
|
31 |
+
input_ids = tokenizer.encode(text, add_special_tokens=True, return_tensors= 'pt')
|
32 |
+
|
33 |
+
logits, = model(input_ids)
|
34 |
+
logits = logits.squeeze(0)
|
35 |
+
|
36 |
+
prob = nn.functional.softmax(logits, dim=0)
|
37 |
+
|
38 |
+
# 0 Negative, 1 Neutral, 2 Positive
|
39 |
+
print(prob.argmax().tolist())
|
40 |
+
```
|
41 |
+
|
42 |
+
#### Hyperparameters
|
43 |
+
|
44 |
+
- Optimizer: **AdamW** with learning rate of **2e-5**, epsilon of **1e-8**
|
45 |
+
- Max epochs: **2**
|
46 |
+
- Batch size: **16**
|
47 |
+
|
48 |
+
## Acknowledgments
|
49 |
+
|
50 |
+
Thanks to the support from:
|
51 |
+
the [Hugging Face](https://huggingface.co/), https://www.unioneprofessionisti.com
|
52 |
+
|
53 |
+
https://www.unideeplearning.com/
|