pubmed-abs-noise-01 / README.md
gayanin's picture
End of training
d230b90
metadata
license: apache-2.0
base_model: facebook/bart-base
tags:
  - generated_from_trainer
model-index:
  - name: pubmed-abs-noise-01
    results: []

pubmed-abs-noise-01

This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2094

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.3418 0.11 500 0.3102
0.3315 0.21 1000 0.2811
0.3479 0.32 1500 0.2585
0.308 0.43 2000 0.2609
0.2716 0.54 2500 0.2549
0.2845 0.64 3000 0.2442
0.2781 0.75 3500 0.2379
0.2893 0.86 4000 0.2314
0.2581 0.96 4500 0.2297
0.2269 1.07 5000 0.2334
0.2274 1.18 5500 0.2272
0.2053 1.28 6000 0.2305
0.2062 1.39 6500 0.2246
0.241 1.5 7000 0.2215
0.1625 1.61 7500 0.2239
0.2179 1.71 8000 0.2181
0.2372 1.82 8500 0.2187
0.2116 1.93 9000 0.2115
0.1625 2.03 9500 0.2168
0.187 2.14 10000 0.2170
0.159 2.25 10500 0.2163
0.1741 2.35 11000 0.2144
0.1964 2.46 11500 0.2111
0.1679 2.57 12000 0.2117
0.1662 2.68 12500 0.2096
0.1436 2.78 13000 0.2107
0.1875 2.89 13500 0.2099
0.1656 3.0 14000 0.2094

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0
  • Datasets 2.14.7
  • Tokenizers 0.14.1