update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: ec-biogpt-noised-pubmed-v4
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# ec-biogpt-noised-pubmed-v4
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.8204
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 16
|
38 |
+
- eval_batch_size: 16
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_steps: 10
|
43 |
+
- num_epochs: 5
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 1.7942 | 0.11 | 500 | 1.8358 |
|
51 |
+
| 1.9793 | 0.21 | 1000 | 1.8000 |
|
52 |
+
| 1.9244 | 0.32 | 1500 | 1.7763 |
|
53 |
+
| 1.8871 | 0.43 | 2000 | 1.7623 |
|
54 |
+
| 1.6525 | 0.54 | 2500 | 1.7511 |
|
55 |
+
| 1.6871 | 0.64 | 3000 | 1.7401 |
|
56 |
+
| 1.5771 | 0.75 | 3500 | 1.7315 |
|
57 |
+
| 1.732 | 0.86 | 4000 | 1.7278 |
|
58 |
+
| 1.9909 | 0.96 | 4500 | 1.7196 |
|
59 |
+
| 1.5173 | 1.07 | 5000 | 1.7204 |
|
60 |
+
| 1.6015 | 1.18 | 5500 | 1.7206 |
|
61 |
+
| 1.6817 | 1.28 | 6000 | 1.7183 |
|
62 |
+
| 1.6475 | 1.39 | 6500 | 1.7161 |
|
63 |
+
| 1.7425 | 1.5 | 7000 | 1.7114 |
|
64 |
+
| 1.4702 | 1.61 | 7500 | 1.7067 |
|
65 |
+
| 1.5635 | 1.71 | 8000 | 1.7078 |
|
66 |
+
| 1.574 | 1.82 | 8500 | 1.7020 |
|
67 |
+
| 1.6691 | 1.93 | 9000 | 1.6985 |
|
68 |
+
| 1.4796 | 2.03 | 9500 | 1.7339 |
|
69 |
+
| 1.472 | 2.14 | 10000 | 1.7354 |
|
70 |
+
| 1.4476 | 2.25 | 10500 | 1.7331 |
|
71 |
+
| 1.4402 | 2.35 | 11000 | 1.7327 |
|
72 |
+
| 1.5988 | 2.46 | 11500 | 1.7328 |
|
73 |
+
| 1.3682 | 2.57 | 12000 | 1.7299 |
|
74 |
+
| 1.4988 | 2.68 | 12500 | 1.7281 |
|
75 |
+
| 1.4514 | 2.78 | 13000 | 1.7257 |
|
76 |
+
| 1.6356 | 2.89 | 13500 | 1.7264 |
|
77 |
+
| 1.6653 | 3.0 | 14000 | 1.7240 |
|
78 |
+
| 1.2013 | 3.1 | 14500 | 1.7782 |
|
79 |
+
| 1.2864 | 3.21 | 15000 | 1.7770 |
|
80 |
+
| 1.4638 | 3.32 | 15500 | 1.7817 |
|
81 |
+
| 1.2501 | 3.43 | 16000 | 1.7787 |
|
82 |
+
| 1.4613 | 3.53 | 16500 | 1.7791 |
|
83 |
+
| 1.1816 | 3.64 | 17000 | 1.7767 |
|
84 |
+
| 1.1841 | 3.75 | 17500 | 1.7786 |
|
85 |
+
| 1.2382 | 3.85 | 18000 | 1.7743 |
|
86 |
+
| 1.2868 | 3.96 | 18500 | 1.7749 |
|
87 |
+
| 1.2074 | 4.07 | 19000 | 1.8167 |
|
88 |
+
| 1.1657 | 4.17 | 19500 | 1.8224 |
|
89 |
+
| 1.1851 | 4.28 | 20000 | 1.8197 |
|
90 |
+
| 1.1141 | 4.39 | 20500 | 1.8225 |
|
91 |
+
| 1.0628 | 4.5 | 21000 | 1.8202 |
|
92 |
+
| 1.0946 | 4.6 | 21500 | 1.8209 |
|
93 |
+
| 1.037 | 4.71 | 22000 | 1.8201 |
|
94 |
+
| 1.1277 | 4.82 | 22500 | 1.8206 |
|
95 |
+
| 1.2766 | 4.92 | 23000 | 1.8204 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.27.4
|
101 |
+
- Pytorch 2.0.0+cu117
|
102 |
+
- Datasets 2.11.0
|
103 |
+
- Tokenizers 0.13.3
|