|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-mlm-pubmed-medterm |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-mlm-pubmed-medterm |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Rouge2 Precision: 0.985 |
|
- Rouge2 Recall: 0.7208 |
|
- Rouge2 Fmeasure: 0.8088 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 0.0018 | 1.0 | 13833 | 0.0003 | 0.985 | 0.7208 | 0.8088 | |
|
| 0.0014 | 2.0 | 27666 | 0.0006 | 0.9848 | 0.7207 | 0.8086 | |
|
| 0.0009 | 3.0 | 41499 | 0.0002 | 0.9848 | 0.7207 | 0.8086 | |
|
| 0.0007 | 4.0 | 55332 | 0.0002 | 0.985 | 0.7208 | 0.8088 | |
|
| 0.0006 | 5.0 | 69165 | 0.0001 | 0.9848 | 0.7207 | 0.8087 | |
|
| 0.0001 | 6.0 | 82998 | 0.0002 | 0.9846 | 0.7206 | 0.8086 | |
|
| 0.0009 | 7.0 | 96831 | 0.0001 | 0.9848 | 0.7208 | 0.8087 | |
|
| 0.0 | 8.0 | 110664 | 0.0000 | 0.9848 | 0.7207 | 0.8087 | |
|
| 0.0001 | 9.0 | 124497 | 0.0000 | 0.985 | 0.7208 | 0.8088 | |
|
| 0.0 | 10.0 | 138330 | 0.0000 | 0.985 | 0.7208 | 0.8088 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.5 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.16.1 |
|
- Tokenizers 0.10.3 |
|
|