metadata
license: mit
tags:
- generated_from_trainer
datasets:
- wikitext
metrics:
- accuracy
base_model: roberta-base
model-index:
- name: wikitext_roberta-base
results:
- task:
type: fill-mask
name: Masked Language Modeling
dataset:
name: wikitext wikitext-2-raw-v1
type: wikitext
args: wikitext-2-raw-v1
metrics:
- type: accuracy
value: 0.7371052344006119
name: Accuracy
wikitext_roberta-base
This model is a fine-tuned version of roberta-base on the wikitext wikitext-2-raw-v1 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2143
- Accuracy: 0.7371
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4175 | 0.99 | 37 | 1.3355 | 0.7194 |
1.438 | 1.99 | 74 | 1.2953 | 0.7249 |
1.4363 | 2.99 | 111 | 1.2759 | 0.7276 |
1.3391 | 3.99 | 148 | 1.2904 | 0.7252 |
1.3741 | 4.99 | 185 | 1.2621 | 0.7290 |
1.2771 | 5.99 | 222 | 1.2312 | 0.7353 |
1.287 | 6.99 | 259 | 1.2542 | 0.7289 |
1.29 | 7.99 | 296 | 1.2290 | 0.7345 |
1.2948 | 8.99 | 333 | 1.2537 | 0.7286 |
1.2741 | 9.99 | 370 | 1.2199 | 0.7354 |
1.2342 | 10.99 | 407 | 1.2520 | 0.7309 |
1.2199 | 11.99 | 444 | 1.2738 | 0.7260 |
1.206 | 12.99 | 481 | 1.2286 | 0.7335 |
1.221 | 13.99 | 518 | 1.2421 | 0.7327 |
1.2062 | 14.99 | 555 | 1.2402 | 0.7328 |
1.2305 | 15.99 | 592 | 1.2473 | 0.7308 |
1.2426 | 16.99 | 629 | 1.2250 | 0.7318 |
1.2096 | 17.99 | 666 | 1.2186 | 0.7353 |
1.1961 | 18.99 | 703 | 1.2214 | 0.7361 |
1.2136 | 19.99 | 740 | 1.2506 | 0.7311 |
Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1