gaodrew's picture
Model save
c1006c3 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: deberta-pii-masking-augmented-test5
    results: []

deberta-pii-masking-augmented-test5

This model is a fine-tuned version of microsoft/deberta-v3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0360
  • Precision: 0.9402
  • Recall: 0.9557
  • F1: 0.9479
  • Accuracy: 0.9891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.6188 0.0305 500 0.3788 0.5431 0.6547 0.5937 0.9030
0.1746 0.0609 1000 0.1576 0.7686 0.8381 0.8019 0.9565
0.0857 0.0914 1500 0.1094 0.8148 0.8787 0.8455 0.9669
0.0624 0.1219 2000 0.0882 0.8475 0.8979 0.8720 0.9728
0.0512 0.1524 2500 0.0610 0.8834 0.9161 0.8994 0.9811
0.0445 0.1828 3000 0.0584 0.8968 0.9216 0.9090 0.9814
0.0398 0.2133 3500 0.0545 0.9097 0.9324 0.9209 0.9836
0.0355 0.2438 4000 0.0500 0.9125 0.9342 0.9232 0.9845
0.0337 0.2743 4500 0.0477 0.9068 0.9355 0.9209 0.9843
0.0309 0.3047 5000 0.0489 0.9214 0.9408 0.9310 0.9854
0.0284 0.3352 5500 0.0444 0.9173 0.9433 0.9301 0.9861
0.0278 0.3657 6000 0.0423 0.9247 0.9416 0.9331 0.9865
0.0258 0.3962 6500 0.0410 0.9291 0.9471 0.9380 0.9873
0.0242 0.4266 7000 0.0375 0.9301 0.9499 0.9399 0.9881
0.0241 0.4571 7500 0.0380 0.9321 0.9500 0.9410 0.9882
0.0217 0.4876 8000 0.0347 0.9404 0.9545 0.9474 0.9890
0.0207 0.5181 8500 0.0335 0.9360 0.9526 0.9442 0.9892
0.0204 0.5485 9000 0.0366 0.9364 0.9542 0.9452 0.9888
0.019 0.5790 9500 0.0362 0.9355 0.9534 0.9444 0.9887

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3