Commit
•
1e11dea
0
Parent(s):
Duplicate from stabilityai/stablelm-2-zephyr-1_6b
Browse filesCo-authored-by: dmayhem93 <dmayhem93@users.noreply.huggingface.co>
- .gitattributes +35 -0
- LICENSE +42 -0
- README.md +158 -0
- arcade100k.tiktoken +0 -0
- config.json +25 -0
- configuration_stablelm.py +183 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_stablelm.py +1341 -0
- special_tokens_map.json +5 -0
- stablelm-2-zephyr-1_6b-OpenVINO-4bit.bin +3 -0
- stablelm-2-zephyr-1_6b-OpenVINO-4bit.xml +3 -0
- stablelm-2-zephyr-1_6b-Q4_0.gguf +3 -0
- stablelm-2-zephyr-1_6b-Q4_1.gguf +3 -0
- stablelm-2-zephyr-1_6b-Q5_K_M.gguf +3 -0
- stablelm-2-zephyr-1_6b-Q8_0.gguf +3 -0
- stablelm-2-zephyr-1_6b.gguf +3 -0
- tokenization_arcade100k.py +292 -0
- tokenizer_config.json +17 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE AGREEMENT
|
2 |
+
Dated: December 06, 2023
|
3 |
+
|
4 |
+
By using or distributing any portion or element of the Models, Software, Software Products or Derivative Works, you agree to be bound by this Agreement.
|
5 |
+
|
6 |
+
"Agreement" means this Stable Non-Commercial Research Community License Agreement.
|
7 |
+
|
8 |
+
“AUP” means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may be updated from time to time.
|
9 |
+
|
10 |
+
"Derivative Work(s)” means (a) any derivative work of the Software Products as recognized by U.S. copyright laws and (b) any modifications to a Model, and any other model created which is based on or derived from the Model or the Model’s output. For clarity, Derivative Works do not include the output of any Model.
|
11 |
+
|
12 |
+
“Documentation” means any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software.
|
13 |
+
|
14 |
+
"Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
|
15 |
+
|
16 |
+
“Model(s)" means, collectively, Stability AI’s proprietary models and algorithms, including machine-learning models, trained model weights and other elements of the foregoing, made available under this Agreement.
|
17 |
+
|
18 |
+
“Non-Commercial Uses” means exercising any of the rights granted herein for the purpose of research or non-commercial purposes. Non-Commercial Uses does not include any production use of the Software Products or any Derivative Works.
|
19 |
+
|
20 |
+
"Stability AI" or "we" means Stability AI Ltd. and its affiliates.
|
21 |
+
|
22 |
+
|
23 |
+
"Software" means Stability AI’s proprietary software made available under this Agreement.
|
24 |
+
|
25 |
+
“Software Products” means the Models, Software and Documentation, individually or in any combination.
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
1. License Rights and Redistribution.
|
30 |
+
a. Subject to your compliance with this Agreement, the AUP (which is hereby incorporated herein by reference), and the Documentation, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AI’s intellectual property or other rights owned or controlled by Stability AI embodied in the Software Products to use, reproduce, distribute, and create Derivative Works of, the Software Products, in each case for Non-Commercial Uses only.
|
31 |
+
b. You may not use the Software Products or Derivative Works to enable third parties to use the Software Products or Derivative Works as part of your hosted service or via your APIs, whether you are adding substantial additional functionality thereto or not. Merely distributing the Software Products or Derivative Works for download online without offering any related service (ex. by distributing the Models on HuggingFace) is not a violation of this subsection. If you wish to use the Software Products or any Derivative Works for commercial or production use or you wish to make the Software Products or any Derivative Works available to third parties via your hosted service or your APIs, contact Stability AI at https://stability.ai/contact.
|
32 |
+
c. If you distribute or make the Software Products, or any Derivative Works thereof, available to a third party, the Software Products, Derivative Works, or any portion thereof, respectively, will remain subject to this Agreement and you must (i) provide a copy of this Agreement to such third party, and (ii) retain the following attribution notice within a "Notice" text file distributed as a part of such copies: "This Stability AI Model is licensed under the Stability AI Non-Commercial Research Community License, Copyright (c) Stability AI Ltd. All Rights Reserved.” If you create a Derivative Work of a Software Product, you may add your own attribution notices to the Notice file included with the Software Product, provided that you clearly indicate which attributions apply to the Software Product and you must state in the NOTICE file that you changed the Software Product and how it was modified.
|
33 |
+
2. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE SOFTWARE PRODUCTS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE SOFTWARE PRODUCTS, DERIVATIVE WORKS OR ANY OUTPUT OR RESULTS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE SOFTWARE PRODUCTS, DERIVATIVE WORKS AND ANY OUTPUT AND RESULTS.
|
34 |
+
3. Limitation of Liability. IN NO EVENT WILL STABILITY AI OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF STABILITY AI OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
35 |
+
4. Intellectual Property.
|
36 |
+
a. No trademark licenses are granted under this Agreement, and in connection with the Software Products or Derivative Works, neither Stability AI nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Software Products or Derivative Works.
|
37 |
+
b. Subject to Stability AI’s ownership of the Software Products and Derivative Works made by or for Stability AI, with respect to any Derivative Works that are made by you, as between you and Stability AI, you are and will be the owner of such Derivative Works
|
38 |
+
c. If you institute litigation or other proceedings against Stability AI (including a cross-claim or counterclaim in a lawsuit) alleging that the Software Products, Derivative Works or associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out of or related to your use or distribution of the Software Products or Derivative Works in violation of this Agreement.
|
39 |
+
5. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Software Products and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Stability AI may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of any Software Products or Derivative Works. Sections 2-4 shall survive the termination of this Agreement.
|
40 |
+
|
41 |
+
6. Governing Law. This Agreement will be governed by and construed in accordance with the laws of the United States and the State of California without regard to choice of law
|
42 |
+
principles.
|
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- HuggingFaceH4/ultrachat_200k
|
4 |
+
- allenai/ultrafeedback_binarized_cleaned
|
5 |
+
- meta-math/MetaMathQA
|
6 |
+
- WizardLM/WizardLM_evol_instruct_V2_196k
|
7 |
+
- openchat/openchat_sharegpt4_dataset
|
8 |
+
- LDJnr/Capybara
|
9 |
+
- Intel/orca_dpo_pairs
|
10 |
+
- hkust-nlp/deita-10k-v0
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
tags:
|
14 |
+
- causal-lm
|
15 |
+
extra_gated_fields:
|
16 |
+
Name: text
|
17 |
+
Email: text
|
18 |
+
Country: text
|
19 |
+
Organization or Affiliation: text
|
20 |
+
I ALLOW Stability AI to email me about new model releases: checkbox
|
21 |
+
license: other
|
22 |
+
---
|
23 |
+
# `StableLM 2 Zephyr 1.6B`
|
24 |
+
|
25 |
+
## Model Description
|
26 |
+
|
27 |
+
`Stable LM 2 Zephyr 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
`StableLM 2 Zephyr 1.6B` uses the following instruction format:
|
32 |
+
```
|
33 |
+
<|user|>
|
34 |
+
Which famous math number begins with 1.6 ...?<|endoftext|>
|
35 |
+
<|assistant|>
|
36 |
+
The number you are referring to is 1.618033988749895. This is the famous value known as the golden ratio<|endoftext|>
|
37 |
+
```
|
38 |
+
|
39 |
+
This format is also available through the tokenizer's `apply_chat_template` method:
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-zephyr-1_6b', trust_remote_code=True)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
'stabilityai/stablelm-2-zephyr-1_6b',
|
47 |
+
device_map="auto"
|
48 |
+
)
|
49 |
+
|
50 |
+
prompt = [{'role': 'user', 'content': 'Which famous math number begins with 1.6 ...?'}]
|
51 |
+
inputs = tokenizer.apply_chat_template(
|
52 |
+
prompt,
|
53 |
+
add_generation_prompt=True,
|
54 |
+
return_tensors='pt'
|
55 |
+
)
|
56 |
+
|
57 |
+
tokens = model.generate(
|
58 |
+
inputs.to(model.device),
|
59 |
+
max_new_tokens=1024,
|
60 |
+
temperature=0.5,
|
61 |
+
do_sample=True
|
62 |
+
)
|
63 |
+
|
64 |
+
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
|
65 |
+
```
|
66 |
+
|
67 |
+
## Model Details
|
68 |
+
|
69 |
+
* **Developed by**: [Stability AI](https://stability.ai/)
|
70 |
+
* **Model type**: `StableLM 2 Zephyr 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
|
71 |
+
* **Language(s)**: English
|
72 |
+
* **Paper**: [Stable LM 2 1.6B Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
|
73 |
+
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
|
74 |
+
* **Finetuned from model**: [https://huggingface.co/stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)
|
75 |
+
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
|
76 |
+
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
|
77 |
+
|
78 |
+
### Training Dataset
|
79 |
+
|
80 |
+
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
|
81 |
+
1. SFT Datasets
|
82 |
+
- HuggingFaceH4/ultrachat_200k
|
83 |
+
- meta-math/MetaMathQA
|
84 |
+
- WizardLM/WizardLM_evol_instruct_V2_196k
|
85 |
+
- Open-Orca/SlimOrca
|
86 |
+
- openchat/openchat_sharegpt4_dataset
|
87 |
+
- LDJnr/Capybara
|
88 |
+
- hkust-nlp/deita-10k-v0
|
89 |
+
|
90 |
+
2. Preference Datasets:
|
91 |
+
- allenai/ultrafeedback_binarized_cleaned
|
92 |
+
- Intel/orca_dpo_pairs
|
93 |
+
|
94 |
+
## Performance
|
95 |
+
|
96 |
+
### MT-Bench
|
97 |
+
|
98 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/61b2bf4f5b1f7cad1799cfbb/QH00HVM3lg-5f17U_py4K.png" alt="mt_bench_plot" width="600"/>
|
99 |
+
|
100 |
+
| Model | Size | MT-Bench |
|
101 |
+
|-------------------------|------|----------|
|
102 |
+
| Mistral-7B-Instruct-v0.2| 7B | 7.61 |
|
103 |
+
| Llama2-Chat | 70B | 6.86 |
|
104 |
+
| stablelm-zephyr-3b | 3B | 6.64 |
|
105 |
+
| MPT-30B-Chat | 30B | 6.39 |
|
106 |
+
| **stablelm-2-zephyr-1.6b** | 1.6B | 5.42 |
|
107 |
+
| Falcon-40B-Instruct | 40B | 5.17 |
|
108 |
+
| Qwen-1.8B-Chat | 1.8B | 4.95 |
|
109 |
+
| dolphin-2.6-phi-2 | 2.7B | 4.93 |
|
110 |
+
| phi-2 | 2.7B | 4.29 |
|
111 |
+
| TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
|
112 |
+
|
113 |
+
### OpenLLM Leaderboard
|
114 |
+
|
115 |
+
| Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
|
116 |
+
|----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
|
117 |
+
| microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
|
118 |
+
| **stabilityai/stablelm-2-zephyr-1_6b** | 1.6B | 49.89% | 43.69% | 69.34% | 41.85% | 45.21% | 64.09% | 35.18% |
|
119 |
+
| microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
|
120 |
+
| stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
|
121 |
+
| mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
|
122 |
+
| KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
|
123 |
+
| openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
|
124 |
+
| iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
|
125 |
+
| TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
### Training Infrastructure
|
130 |
+
|
131 |
+
* **Hardware**: `StableLM 2 Zephyr 1.6B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
|
132 |
+
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
|
133 |
+
|
134 |
+
## Use and Limitations
|
135 |
+
|
136 |
+
### Intended Use
|
137 |
+
|
138 |
+
The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
|
139 |
+
|
140 |
+
### Limitations and Bias
|
141 |
+
|
142 |
+
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
|
143 |
+
|
144 |
+
Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
|
145 |
+
Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
|
146 |
+
Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
|
147 |
+
Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
|
148 |
+
|
149 |
+
|
150 |
+
## How to Cite
|
151 |
+
|
152 |
+
```bibtex
|
153 |
+
@misc{StableLM-2-1.6B,
|
154 |
+
url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)},
|
155 |
+
title={Stable LM 2 1.6B},
|
156 |
+
author={Stability AI Language Team}
|
157 |
+
}
|
158 |
+
```
|
arcade100k.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"StableLmForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 100257,
|
6 |
+
"eos_token_id": 100257,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 2048,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 5632,
|
11 |
+
"max_position_embeddings": 4096,
|
12 |
+
"model_type": "stablelm",
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"num_key_value_heads": 32,
|
17 |
+
"partial_rotary_factor": 0.25,
|
18 |
+
"rope_theta": 10000,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float16",
|
21 |
+
"transformers_version": "4.38.0",
|
22 |
+
"use_cache": true,
|
23 |
+
"use_qkv_bias": true,
|
24 |
+
"vocab_size": 100352
|
25 |
+
}
|
configuration_stablelm.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Stability AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" StableLM model configuration """
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"stabilityai/stablelm-3b-4e1t": "https://huggingface.co/stabilityai/stablelm-3b-4e1t/resolve/main/config.json",
|
25 |
+
# See all StableLM models at https://huggingface.co/models?filter=stablelm
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class StableLmConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`~StableLmModel`].
|
32 |
+
It is used to instantiate an StableLM model according to the specified arguments, defining the model
|
33 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
34 |
+
the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
37 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
38 |
+
for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 50304):
|
43 |
+
Vocabulary size of the StableLM model. Defines the number of different tokens that
|
44 |
+
can be represented by the `inputs_ids` passed when calling [`StableLmModel`].
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 6912):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
hidden_size (`int`, *optional*, defaults to 2560):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string).
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
64 |
+
The maximum sequence length that this model might ever be used with.
|
65 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing
|
68 |
+
all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
70 |
+
The epsilon used by the normalization layers.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions
|
73 |
+
(not used by all models). Only relevant if `config.is_decoder=True`.
|
74 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether the model's input and output word embeddings should be tied.
|
76 |
+
rope_theta (`float`, *optional*, defaults to `10000.0`):
|
77 |
+
The base period of the RoPE embeddings.
|
78 |
+
rope_scaling (`Dict`, *optional*):
|
79 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
80 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
81 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
82 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
83 |
+
these scaling strategies behave:
|
84 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
85 |
+
is an experimental feature, subject to breaking API changes in future versions.
|
86 |
+
use_qkv_bias (`bool`, *optional*, defaults to `False`):
|
87 |
+
Whether or not the model should use bias for qkv layers.
|
88 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
89 |
+
The dropout ratio after applying the MLP to the hidden states.
|
90 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
91 |
+
The dropout ratio for the attention probabilities.
|
92 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.25):
|
93 |
+
Percentage of the query and keys which will have rotary embedding.
|
94 |
+
bos_token_id (int, *optional*, defaults to 0):
|
95 |
+
The id of the `BOS` token in the vocabulary.
|
96 |
+
eos_token_id (int, *optional*, defaults to 0):
|
97 |
+
The id of the `EOS` token in the vocabulary.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import StableLmModel, StableLmConfig
|
103 |
+
|
104 |
+
>>> # Initializing a StableLM stablelm-3b style configuration
|
105 |
+
>>> configuration = StableLmConfig()
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "stablelm"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=50304,
|
114 |
+
intermediate_size=6912,
|
115 |
+
hidden_size=2560,
|
116 |
+
num_hidden_layers=32,
|
117 |
+
num_attention_heads=32,
|
118 |
+
num_key_value_heads=32,
|
119 |
+
hidden_act="silu",
|
120 |
+
max_position_embeddings=4096,
|
121 |
+
initializer_range=0.02,
|
122 |
+
layer_norm_eps=1.0e-5,
|
123 |
+
use_cache=True,
|
124 |
+
tie_word_embeddings=False,
|
125 |
+
rope_theta=10_000,
|
126 |
+
rope_scaling=None,
|
127 |
+
use_qkv_bias=False,
|
128 |
+
hidden_dropout=0.0,
|
129 |
+
attention_dropout=0.0,
|
130 |
+
partial_rotary_factor=0.25,
|
131 |
+
bos_token_id=0,
|
132 |
+
eos_token_id=0,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
self.max_position_embeddings = max_position_embeddings
|
137 |
+
|
138 |
+
self.hidden_size = hidden_size
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
+
self.num_hidden_layers = num_hidden_layers
|
141 |
+
self.num_attention_heads = num_attention_heads
|
142 |
+
self.num_key_value_heads = num_key_value_heads
|
143 |
+
self.hidden_act = hidden_act
|
144 |
+
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
147 |
+
self.use_cache = use_cache
|
148 |
+
self.rope_theta = rope_theta
|
149 |
+
self.rope_scaling = rope_scaling
|
150 |
+
self.use_qkv_bias = use_qkv_bias
|
151 |
+
self.hidden_dropout = hidden_dropout
|
152 |
+
self.attention_dropout = attention_dropout
|
153 |
+
self.partial_rotary_factor = partial_rotary_factor
|
154 |
+
self._rope_scaling_validation()
|
155 |
+
|
156 |
+
super().__init__(
|
157 |
+
bos_token_id=bos_token_id,
|
158 |
+
eos_token_id=eos_token_id,
|
159 |
+
tie_word_embeddings=tie_word_embeddings,
|
160 |
+
**kwargs,
|
161 |
+
)
|
162 |
+
|
163 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
164 |
+
def _rope_scaling_validation(self):
|
165 |
+
"""
|
166 |
+
Validate the `rope_scaling` configuration.
|
167 |
+
"""
|
168 |
+
if self.rope_scaling is None:
|
169 |
+
return
|
170 |
+
|
171 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
172 |
+
raise ValueError(
|
173 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
174 |
+
f"got {self.rope_scaling}"
|
175 |
+
)
|
176 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
177 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
178 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
179 |
+
raise ValueError(
|
180 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
181 |
+
)
|
182 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
183 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100257,
|
4 |
+
"eos_token_id": 100257,
|
5 |
+
"transformers_version": "4.38.0"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:233815ace7c2e3ecc94e9575aed9f1c5dc6935d126f6c13a7586ad28ae25ddc6
|
3 |
+
size 3289069184
|
modeling_stablelm.py
ADDED
@@ -0,0 +1,1341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch StableLM model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
32 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
33 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.utils import (
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
is_flash_attn_greater_or_equal_2_10,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_stablelm import StableLmConfig
|
44 |
+
|
45 |
+
|
46 |
+
if is_flash_attn_2_available():
|
47 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
48 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "StableLmConfig"
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
57 |
+
def _get_unpad_data(attention_mask):
|
58 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
59 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
60 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
61 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
62 |
+
return (
|
63 |
+
indices,
|
64 |
+
cu_seqlens,
|
65 |
+
max_seqlen_in_batch,
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->StableLm
|
70 |
+
class StableLmRotaryEmbedding(nn.Module):
|
71 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
72 |
+
super().__init__()
|
73 |
+
|
74 |
+
self.dim = dim
|
75 |
+
self.max_position_embeddings = max_position_embeddings
|
76 |
+
self.base = base
|
77 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
78 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
79 |
+
|
80 |
+
# Build here to make `torch.jit.trace` work.
|
81 |
+
self._set_cos_sin_cache(
|
82 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
83 |
+
)
|
84 |
+
|
85 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
86 |
+
self.max_seq_len_cached = seq_len
|
87 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
88 |
+
|
89 |
+
freqs = torch.outer(t, self.inv_freq)
|
90 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
91 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
92 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
93 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
94 |
+
|
95 |
+
def forward(self, x, seq_len=None):
|
96 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
97 |
+
if seq_len > self.max_seq_len_cached:
|
98 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
99 |
+
|
100 |
+
return (
|
101 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
102 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->StableLm
|
107 |
+
class StableLmLinearScalingRotaryEmbedding(StableLmRotaryEmbedding):
|
108 |
+
"""StableLmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
109 |
+
|
110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
111 |
+
self.scaling_factor = scaling_factor
|
112 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
113 |
+
|
114 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
115 |
+
self.max_seq_len_cached = seq_len
|
116 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
117 |
+
t = t / self.scaling_factor
|
118 |
+
|
119 |
+
freqs = torch.outer(t, self.inv_freq)
|
120 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
121 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
122 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
123 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
124 |
+
|
125 |
+
|
126 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->StableLm
|
127 |
+
class StableLmDynamicNTKScalingRotaryEmbedding(StableLmRotaryEmbedding):
|
128 |
+
"""StableLmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
129 |
+
|
130 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
131 |
+
self.scaling_factor = scaling_factor
|
132 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
133 |
+
|
134 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
135 |
+
self.max_seq_len_cached = seq_len
|
136 |
+
|
137 |
+
if seq_len > self.max_position_embeddings:
|
138 |
+
base = self.base * (
|
139 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
140 |
+
) ** (self.dim / (self.dim - 2))
|
141 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
142 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
143 |
+
|
144 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
145 |
+
|
146 |
+
freqs = torch.outer(t, self.inv_freq)
|
147 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
150 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
154 |
+
def rotate_half(x):
|
155 |
+
"""Rotates half the hidden dims of the input."""
|
156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
158 |
+
return torch.cat((-x2, x1), dim=-1)
|
159 |
+
|
160 |
+
|
161 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
162 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
163 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
q (`torch.Tensor`): The query tensor.
|
167 |
+
k (`torch.Tensor`): The key tensor.
|
168 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
169 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
170 |
+
position_ids (`torch.Tensor`):
|
171 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
172 |
+
used to pass offsetted position ids when working with a KV-cache.
|
173 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
174 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
175 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
176 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
177 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
178 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
179 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
180 |
+
Returns:
|
181 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
182 |
+
"""
|
183 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
184 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
185 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
186 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
187 |
+
return q_embed, k_embed
|
188 |
+
|
189 |
+
|
190 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->StableLm
|
191 |
+
class StableLmMLP(nn.Module):
|
192 |
+
def __init__(self, config):
|
193 |
+
super().__init__()
|
194 |
+
self.config = config
|
195 |
+
self.hidden_size = config.hidden_size
|
196 |
+
self.intermediate_size = config.intermediate_size
|
197 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
198 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
199 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
200 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
204 |
+
|
205 |
+
|
206 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
207 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
208 |
+
"""
|
209 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
210 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
211 |
+
"""
|
212 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
213 |
+
if n_rep == 1:
|
214 |
+
return hidden_states
|
215 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
216 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
217 |
+
|
218 |
+
|
219 |
+
class StableLmAttention(nn.Module):
|
220 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
221 |
+
|
222 |
+
def __init__(self, config: StableLmConfig, layer_idx: Optional[int] = None):
|
223 |
+
super().__init__()
|
224 |
+
self.config = config
|
225 |
+
self.layer_idx = layer_idx
|
226 |
+
if layer_idx is None:
|
227 |
+
logger.warning_once(
|
228 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
229 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
230 |
+
"when creating this class."
|
231 |
+
)
|
232 |
+
|
233 |
+
self.hidden_size = config.hidden_size
|
234 |
+
self.num_heads = config.num_attention_heads
|
235 |
+
self.head_dim = self.hidden_size // self.num_heads
|
236 |
+
self.num_key_value_heads = config.num_key_value_heads
|
237 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
238 |
+
self.max_position_embeddings = config.max_position_embeddings
|
239 |
+
self.rope_theta = config.rope_theta
|
240 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
241 |
+
self.is_causal = True
|
242 |
+
|
243 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
244 |
+
raise ValueError(
|
245 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
246 |
+
f" and `num_heads`: {self.num_heads})."
|
247 |
+
)
|
248 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias)
|
249 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
|
250 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
|
251 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
252 |
+
|
253 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
254 |
+
self._init_rope()
|
255 |
+
|
256 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonAttention._init_rope with Persimmon->StableLm
|
257 |
+
def _init_rope(self):
|
258 |
+
if self.config.rope_scaling is None:
|
259 |
+
self.rotary_emb = StableLmRotaryEmbedding(
|
260 |
+
int(self.partial_rotary_factor * self.head_dim),
|
261 |
+
max_position_embeddings=self.max_position_embeddings,
|
262 |
+
base=self.rope_theta,
|
263 |
+
)
|
264 |
+
else:
|
265 |
+
scaling_type = self.config.rope_scaling["type"]
|
266 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
267 |
+
if scaling_type == "linear":
|
268 |
+
self.rotary_emb = StableLmLinearScalingRotaryEmbedding(
|
269 |
+
int(self.partial_rotary_factor * self.head_dim),
|
270 |
+
max_position_embeddings=self.max_position_embeddings,
|
271 |
+
scaling_factor=scaling_factor,
|
272 |
+
base=self.rope_theta,
|
273 |
+
)
|
274 |
+
elif scaling_type == "dynamic":
|
275 |
+
self.rotary_emb = StableLmDynamicNTKScalingRotaryEmbedding(
|
276 |
+
int(self.partial_rotary_factor * self.head_dim),
|
277 |
+
max_position_embeddings=self.max_position_embeddings,
|
278 |
+
scaling_factor=scaling_factor,
|
279 |
+
base=self.rope_theta,
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
283 |
+
|
284 |
+
def forward(
|
285 |
+
self,
|
286 |
+
hidden_states: torch.Tensor,
|
287 |
+
attention_mask: Optional[torch.Tensor] = None,
|
288 |
+
position_ids: Optional[torch.LongTensor] = None,
|
289 |
+
past_key_value: Optional[Cache] = None,
|
290 |
+
output_attentions: bool = False,
|
291 |
+
use_cache: bool = False,
|
292 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
293 |
+
bsz, q_len, _ = hidden_states.size()
|
294 |
+
|
295 |
+
query_states = self.q_proj(hidden_states)
|
296 |
+
key_states = self.k_proj(hidden_states)
|
297 |
+
value_states = self.v_proj(hidden_states)
|
298 |
+
|
299 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
300 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
301 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
302 |
+
|
303 |
+
kv_seq_len = key_states.shape[-2]
|
304 |
+
if past_key_value is not None:
|
305 |
+
if self.layer_idx is None:
|
306 |
+
raise ValueError(
|
307 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
308 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
309 |
+
"with a layer index."
|
310 |
+
)
|
311 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
312 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
313 |
+
|
314 |
+
# Partial rotary embedding
|
315 |
+
query_rot, query_pass = (
|
316 |
+
query_states[..., : self.rotary_emb.dim],
|
317 |
+
query_states[..., self.rotary_emb.dim :],
|
318 |
+
)
|
319 |
+
key_rot, key_pass = (
|
320 |
+
key_states[..., : self.rotary_emb.dim],
|
321 |
+
key_states[..., self.rotary_emb.dim :],
|
322 |
+
)
|
323 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
324 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
325 |
+
|
326 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
327 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
328 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
329 |
+
|
330 |
+
if past_key_value is not None:
|
331 |
+
# Specific to RoPE models with partial rotation
|
332 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
333 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
334 |
+
|
335 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
336 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
337 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
338 |
+
|
339 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
340 |
+
|
341 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
342 |
+
raise ValueError(
|
343 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
344 |
+
f" {attn_weights.size()}"
|
345 |
+
)
|
346 |
+
|
347 |
+
if attention_mask is not None:
|
348 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
349 |
+
raise ValueError(
|
350 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
351 |
+
)
|
352 |
+
attn_weights = attn_weights + attention_mask
|
353 |
+
|
354 |
+
# upcast attention to fp32
|
355 |
+
attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype)
|
356 |
+
attn_weights = self.attention_dropout(attn_weights)
|
357 |
+
|
358 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
359 |
+
|
360 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
361 |
+
raise ValueError(
|
362 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
363 |
+
f" {attn_output.size()}"
|
364 |
+
)
|
365 |
+
|
366 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
367 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
368 |
+
|
369 |
+
attn_output = self.o_proj(attn_output)
|
370 |
+
|
371 |
+
if not output_attentions:
|
372 |
+
attn_weights = None
|
373 |
+
|
374 |
+
return attn_output, attn_weights, past_key_value
|
375 |
+
|
376 |
+
|
377 |
+
class StableLmSdpaAttention(StableLmAttention):
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
hidden_states: torch.Tensor,
|
381 |
+
attention_mask: Optional[torch.Tensor] = None,
|
382 |
+
position_ids: Optional[torch.LongTensor] = None,
|
383 |
+
past_key_value: Optional[Cache] = None,
|
384 |
+
output_attentions: bool = False,
|
385 |
+
use_cache: bool = False,
|
386 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
387 |
+
if output_attentions:
|
388 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
389 |
+
logger.warning_once(
|
390 |
+
"StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
391 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
392 |
+
)
|
393 |
+
return super().forward(
|
394 |
+
hidden_states=hidden_states,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
position_ids=position_ids,
|
397 |
+
past_key_value=past_key_value,
|
398 |
+
output_attentions=output_attentions,
|
399 |
+
use_cache=use_cache,
|
400 |
+
)
|
401 |
+
|
402 |
+
bsz, q_len, _ = hidden_states.size()
|
403 |
+
|
404 |
+
query_states = self.q_proj(hidden_states)
|
405 |
+
key_states = self.k_proj(hidden_states)
|
406 |
+
value_states = self.v_proj(hidden_states)
|
407 |
+
|
408 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
409 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
410 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
411 |
+
|
412 |
+
kv_seq_len = key_states.shape[-2]
|
413 |
+
if past_key_value is not None:
|
414 |
+
if self.layer_idx is None:
|
415 |
+
raise ValueError(
|
416 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
417 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
418 |
+
"with a layer index."
|
419 |
+
)
|
420 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
421 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
422 |
+
|
423 |
+
# Partial rotary embedding
|
424 |
+
query_rot, query_pass = (
|
425 |
+
query_states[..., : self.rotary_emb.dim],
|
426 |
+
query_states[..., self.rotary_emb.dim :],
|
427 |
+
)
|
428 |
+
key_rot, key_pass = (
|
429 |
+
key_states[..., : self.rotary_emb.dim],
|
430 |
+
key_states[..., self.rotary_emb.dim :],
|
431 |
+
)
|
432 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
433 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
434 |
+
|
435 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
436 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
437 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
438 |
+
|
439 |
+
if past_key_value is not None:
|
440 |
+
# Specific to RoPE models with partial rotation
|
441 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
442 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
443 |
+
|
444 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
445 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
446 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
447 |
+
|
448 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
449 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
450 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
451 |
+
query_states = query_states.contiguous()
|
452 |
+
key_states = key_states.contiguous()
|
453 |
+
value_states = value_states.contiguous()
|
454 |
+
|
455 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
456 |
+
query_states,
|
457 |
+
key_states,
|
458 |
+
value_states,
|
459 |
+
attn_mask=attention_mask,
|
460 |
+
dropout_p=self.attention_dropout.p if self.training else 0.0,
|
461 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
462 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
463 |
+
)
|
464 |
+
|
465 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
466 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
467 |
+
|
468 |
+
attn_output = self.o_proj(attn_output)
|
469 |
+
|
470 |
+
return attn_output, None, past_key_value
|
471 |
+
|
472 |
+
|
473 |
+
class StableLmFlashAttention2(StableLmAttention):
|
474 |
+
"""
|
475 |
+
StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays
|
476 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
477 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
478 |
+
"""
|
479 |
+
|
480 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
481 |
+
def __init__(self, *args, **kwargs):
|
482 |
+
super().__init__(*args, **kwargs)
|
483 |
+
|
484 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
485 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
486 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
487 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
488 |
+
|
489 |
+
def forward(
|
490 |
+
self,
|
491 |
+
hidden_states: torch.Tensor,
|
492 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
493 |
+
position_ids: Optional[torch.LongTensor] = None,
|
494 |
+
past_key_value: Optional[Cache] = None,
|
495 |
+
output_attentions: bool = False,
|
496 |
+
use_cache: bool = False,
|
497 |
+
**kwargs,
|
498 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
499 |
+
# StableLmFlashAttention2 attention does not support output_attentions
|
500 |
+
|
501 |
+
output_attentions = False
|
502 |
+
|
503 |
+
bsz, q_len, _ = hidden_states.size()
|
504 |
+
|
505 |
+
query_states = self.q_proj(hidden_states)
|
506 |
+
key_states = self.k_proj(hidden_states)
|
507 |
+
value_states = self.v_proj(hidden_states)
|
508 |
+
|
509 |
+
# Flash attention requires the input to have the shape
|
510 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
511 |
+
# therefore we just need to keep the original shape
|
512 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
513 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
514 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
515 |
+
|
516 |
+
kv_seq_len = key_states.shape[-2]
|
517 |
+
if past_key_value is not None:
|
518 |
+
if self.layer_idx is None:
|
519 |
+
raise ValueError(
|
520 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
521 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
522 |
+
"with a layer index."
|
523 |
+
)
|
524 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
525 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
526 |
+
|
527 |
+
# Partial rotary embedding
|
528 |
+
query_rot, query_pass = (
|
529 |
+
query_states[..., : self.rotary_emb.dim],
|
530 |
+
query_states[..., self.rotary_emb.dim :],
|
531 |
+
)
|
532 |
+
key_rot, key_pass = (
|
533 |
+
key_states[..., : self.rotary_emb.dim],
|
534 |
+
key_states[..., self.rotary_emb.dim :],
|
535 |
+
)
|
536 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
537 |
+
|
538 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
539 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
540 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
541 |
+
|
542 |
+
if past_key_value is not None:
|
543 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
544 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
545 |
+
|
546 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
547 |
+
# to be able to avoid many of these transpose/reshape/view.
|
548 |
+
query_states = query_states.transpose(1, 2)
|
549 |
+
key_states = key_states.transpose(1, 2)
|
550 |
+
value_states = value_states.transpose(1, 2)
|
551 |
+
|
552 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
553 |
+
|
554 |
+
attn_output = self._flash_attention_forward(
|
555 |
+
query_states,
|
556 |
+
key_states,
|
557 |
+
value_states,
|
558 |
+
attention_mask,
|
559 |
+
q_len,
|
560 |
+
dropout=dropout_rate,
|
561 |
+
)
|
562 |
+
|
563 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
564 |
+
attn_output = self.o_proj(attn_output)
|
565 |
+
|
566 |
+
if not output_attentions:
|
567 |
+
attn_weights = None
|
568 |
+
|
569 |
+
return attn_output, attn_weights, past_key_value
|
570 |
+
|
571 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
572 |
+
def _flash_attention_forward(
|
573 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
574 |
+
):
|
575 |
+
"""
|
576 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
577 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
578 |
+
|
579 |
+
Args:
|
580 |
+
query_states (`torch.Tensor`):
|
581 |
+
Input query states to be passed to Flash Attention API
|
582 |
+
key_states (`torch.Tensor`):
|
583 |
+
Input key states to be passed to Flash Attention API
|
584 |
+
value_states (`torch.Tensor`):
|
585 |
+
Input value states to be passed to Flash Attention API
|
586 |
+
attention_mask (`torch.Tensor`):
|
587 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
588 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
589 |
+
dropout (`int`, *optional*):
|
590 |
+
Attention dropout
|
591 |
+
softmax_scale (`float`, *optional*):
|
592 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
593 |
+
"""
|
594 |
+
if not self._flash_attn_uses_top_left_mask:
|
595 |
+
causal = self.is_causal
|
596 |
+
else:
|
597 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
598 |
+
causal = self.is_causal and query_length != 1
|
599 |
+
|
600 |
+
# Contains at least one padding token in the sequence
|
601 |
+
if attention_mask is not None:
|
602 |
+
batch_size = query_states.shape[0]
|
603 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
604 |
+
query_states, key_states, value_states, attention_mask, query_length
|
605 |
+
)
|
606 |
+
|
607 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
608 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
609 |
+
|
610 |
+
attn_output_unpad = flash_attn_varlen_func(
|
611 |
+
query_states,
|
612 |
+
key_states,
|
613 |
+
value_states,
|
614 |
+
cu_seqlens_q=cu_seqlens_q,
|
615 |
+
cu_seqlens_k=cu_seqlens_k,
|
616 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
617 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
618 |
+
dropout_p=dropout,
|
619 |
+
softmax_scale=softmax_scale,
|
620 |
+
causal=causal,
|
621 |
+
)
|
622 |
+
|
623 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
624 |
+
else:
|
625 |
+
attn_output = flash_attn_func(
|
626 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
627 |
+
)
|
628 |
+
|
629 |
+
return attn_output
|
630 |
+
|
631 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
632 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
633 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
634 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
635 |
+
|
636 |
+
key_layer = index_first_axis(
|
637 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
638 |
+
)
|
639 |
+
value_layer = index_first_axis(
|
640 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
641 |
+
)
|
642 |
+
if query_length == kv_seq_len:
|
643 |
+
query_layer = index_first_axis(
|
644 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
645 |
+
)
|
646 |
+
cu_seqlens_q = cu_seqlens_k
|
647 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
648 |
+
indices_q = indices_k
|
649 |
+
elif query_length == 1:
|
650 |
+
max_seqlen_in_batch_q = 1
|
651 |
+
cu_seqlens_q = torch.arange(
|
652 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
653 |
+
) # There is a memcpy here, that is very bad.
|
654 |
+
indices_q = cu_seqlens_q[:-1]
|
655 |
+
query_layer = query_layer.squeeze(1)
|
656 |
+
else:
|
657 |
+
# The -q_len: slice assumes left padding.
|
658 |
+
attention_mask = attention_mask[:, -query_length:]
|
659 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
660 |
+
|
661 |
+
return (
|
662 |
+
query_layer,
|
663 |
+
key_layer,
|
664 |
+
value_layer,
|
665 |
+
indices_q,
|
666 |
+
(cu_seqlens_q, cu_seqlens_k),
|
667 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
668 |
+
)
|
669 |
+
|
670 |
+
|
671 |
+
ATTENTION_CLASSES = {
|
672 |
+
"eager": StableLmAttention,
|
673 |
+
"sdpa": StableLmSdpaAttention,
|
674 |
+
"flash_attention_2": StableLmFlashAttention2,
|
675 |
+
}
|
676 |
+
|
677 |
+
|
678 |
+
class StableLmDecoderLayer(nn.Module):
|
679 |
+
def __init__(self, config: StableLmConfig, layer_idx: int):
|
680 |
+
super().__init__()
|
681 |
+
self.hidden_size = config.hidden_size
|
682 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
683 |
+
self.mlp = StableLmMLP(config)
|
684 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
685 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
686 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
687 |
+
|
688 |
+
def forward(
|
689 |
+
self,
|
690 |
+
hidden_states: torch.Tensor,
|
691 |
+
attention_mask: Optional[torch.Tensor] = None,
|
692 |
+
position_ids: Optional[torch.LongTensor] = None,
|
693 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
694 |
+
output_attentions: Optional[bool] = False,
|
695 |
+
use_cache: Optional[bool] = False,
|
696 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
697 |
+
"""
|
698 |
+
Args:
|
699 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
700 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
701 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
702 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
703 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
704 |
+
`[0, config.n_positions - 1]`.
|
705 |
+
|
706 |
+
[What are position IDs?](../glossary#position-ids)
|
707 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
|
708 |
+
cached past key and value projection states
|
709 |
+
output_attentions (`bool`, *optional*):
|
710 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
711 |
+
returned tensors for more detail.
|
712 |
+
use_cache (`bool`, *optional*):
|
713 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
714 |
+
(see `past_key_values`).
|
715 |
+
"""
|
716 |
+
|
717 |
+
residual = hidden_states
|
718 |
+
|
719 |
+
hidden_states = self.input_layernorm(hidden_states)
|
720 |
+
|
721 |
+
# Self Attention
|
722 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
723 |
+
hidden_states=hidden_states,
|
724 |
+
attention_mask=attention_mask,
|
725 |
+
position_ids=position_ids,
|
726 |
+
past_key_value=past_key_value,
|
727 |
+
output_attentions=output_attentions,
|
728 |
+
use_cache=use_cache,
|
729 |
+
)
|
730 |
+
hidden_states = residual + hidden_states
|
731 |
+
|
732 |
+
# Fully Connected
|
733 |
+
residual = hidden_states
|
734 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
735 |
+
hidden_states = self.mlp(hidden_states)
|
736 |
+
|
737 |
+
hidden_states = self.dropout(hidden_states)
|
738 |
+
hidden_states = hidden_states + residual
|
739 |
+
|
740 |
+
outputs = (hidden_states,)
|
741 |
+
|
742 |
+
if output_attentions:
|
743 |
+
outputs += (self_attn_weights,)
|
744 |
+
|
745 |
+
if use_cache:
|
746 |
+
outputs += (present_key_value,)
|
747 |
+
|
748 |
+
return outputs
|
749 |
+
|
750 |
+
|
751 |
+
STABLELM_START_DOCSTRING = r"""
|
752 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
753 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
754 |
+
etc.)
|
755 |
+
|
756 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
757 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
758 |
+
and behavior.
|
759 |
+
|
760 |
+
Parameters:
|
761 |
+
config ([`StableLmConfig`]):
|
762 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
763 |
+
load the weights associated with the model, only the configuration. Check out the
|
764 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
765 |
+
"""
|
766 |
+
|
767 |
+
|
768 |
+
@add_start_docstrings(
|
769 |
+
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
|
770 |
+
STABLELM_START_DOCSTRING,
|
771 |
+
)
|
772 |
+
class StableLmPreTrainedModel(PreTrainedModel):
|
773 |
+
config_class = StableLmConfig
|
774 |
+
base_model_prefix = "model"
|
775 |
+
supports_gradient_checkpointing = True
|
776 |
+
_no_split_modules = ["StableLmDecoderLayer"]
|
777 |
+
_skip_keys_device_placement = "past_key_values"
|
778 |
+
_supports_flash_attn_2 = True
|
779 |
+
_supports_cache_class = True
|
780 |
+
_supports_sdpa = True
|
781 |
+
|
782 |
+
def _init_weights(self, module):
|
783 |
+
std = self.config.initializer_range
|
784 |
+
if isinstance(module, nn.Linear):
|
785 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
786 |
+
if module.bias is not None:
|
787 |
+
module.bias.data.zero_()
|
788 |
+
elif isinstance(module, nn.Embedding):
|
789 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
790 |
+
if module.padding_idx is not None:
|
791 |
+
module.weight.data[module.padding_idx].zero_()
|
792 |
+
|
793 |
+
|
794 |
+
STABLELM_INPUTS_DOCSTRING = r"""
|
795 |
+
Args:
|
796 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
797 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
798 |
+
it.
|
799 |
+
|
800 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
801 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
802 |
+
|
803 |
+
[What are input IDs?](../glossary#input-ids)
|
804 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
805 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
806 |
+
|
807 |
+
- 1 for tokens that are **not masked**,
|
808 |
+
- 0 for tokens that are **masked**.
|
809 |
+
|
810 |
+
[What are attention masks?](../glossary#attention-mask)
|
811 |
+
|
812 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
813 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
814 |
+
|
815 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
816 |
+
`past_key_values`).
|
817 |
+
|
818 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
819 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
820 |
+
information on the default strategy.
|
821 |
+
|
822 |
+
- 1 indicates the head is **not masked**,
|
823 |
+
- 0 indicates the head is **masked**.
|
824 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
825 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
826 |
+
config.n_positions - 1]`.
|
827 |
+
|
828 |
+
[What are position IDs?](../glossary#position-ids)
|
829 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
830 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
831 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
832 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
833 |
+
|
834 |
+
Two formats are allowed:
|
835 |
+
- a [`~cache_utils.Cache`] instance;
|
836 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
837 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
838 |
+
cache format.
|
839 |
+
|
840 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
841 |
+
legacy cache format will be returned.
|
842 |
+
|
843 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
844 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
845 |
+
of shape `(batch_size, sequence_length)`.
|
846 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
847 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
848 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
849 |
+
model's internal embedding lookup matrix.
|
850 |
+
use_cache (`bool`, *optional*):
|
851 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
852 |
+
`past_key_values`).
|
853 |
+
output_attentions (`bool`, *optional*):
|
854 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
855 |
+
tensors for more detail.
|
856 |
+
output_hidden_states (`bool`, *optional*):
|
857 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
858 |
+
more detail.
|
859 |
+
return_dict (`bool`, *optional*):
|
860 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
861 |
+
"""
|
862 |
+
|
863 |
+
|
864 |
+
@add_start_docstrings(
|
865 |
+
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
|
866 |
+
STABLELM_START_DOCSTRING,
|
867 |
+
)
|
868 |
+
class StableLmModel(StableLmPreTrainedModel):
|
869 |
+
"""
|
870 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`StableLmDecoderLayer`]
|
871 |
+
|
872 |
+
Args:
|
873 |
+
config: StableLmConfig
|
874 |
+
"""
|
875 |
+
|
876 |
+
def __init__(self, config: StableLmConfig):
|
877 |
+
super().__init__(config)
|
878 |
+
self.padding_idx = config.pad_token_id
|
879 |
+
self.vocab_size = config.vocab_size
|
880 |
+
|
881 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
882 |
+
self.layers = nn.ModuleList(
|
883 |
+
[StableLmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
884 |
+
)
|
885 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
886 |
+
|
887 |
+
self._attn_implementation = config._attn_implementation
|
888 |
+
self.gradient_checkpointing = False
|
889 |
+
# Initialize weights and apply final processing
|
890 |
+
self.post_init()
|
891 |
+
|
892 |
+
def get_input_embeddings(self):
|
893 |
+
return self.embed_tokens
|
894 |
+
|
895 |
+
def set_input_embeddings(self, value):
|
896 |
+
self.embed_tokens = value
|
897 |
+
|
898 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
899 |
+
def forward(
|
900 |
+
self,
|
901 |
+
input_ids: torch.LongTensor = None,
|
902 |
+
attention_mask: Optional[torch.Tensor] = None,
|
903 |
+
position_ids: Optional[torch.LongTensor] = None,
|
904 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
905 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
906 |
+
use_cache: Optional[bool] = None,
|
907 |
+
output_attentions: Optional[bool] = None,
|
908 |
+
output_hidden_states: Optional[bool] = None,
|
909 |
+
return_dict: Optional[bool] = None,
|
910 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
911 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
912 |
+
output_hidden_states = (
|
913 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
914 |
+
)
|
915 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
916 |
+
|
917 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
918 |
+
|
919 |
+
# retrieve input_ids and inputs_embeds
|
920 |
+
if input_ids is not None and inputs_embeds is not None:
|
921 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
922 |
+
elif input_ids is not None:
|
923 |
+
batch_size, seq_length = input_ids.shape
|
924 |
+
elif inputs_embeds is not None:
|
925 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
926 |
+
else:
|
927 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
928 |
+
|
929 |
+
seq_length_with_past = seq_length
|
930 |
+
past_key_values_length = 0
|
931 |
+
|
932 |
+
if self.gradient_checkpointing and self.training:
|
933 |
+
if use_cache:
|
934 |
+
logger.warning_once(
|
935 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
936 |
+
)
|
937 |
+
use_cache = False
|
938 |
+
|
939 |
+
if use_cache:
|
940 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
941 |
+
if use_legacy_cache:
|
942 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
943 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
944 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
945 |
+
|
946 |
+
if position_ids is None:
|
947 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
948 |
+
position_ids = torch.arange(
|
949 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
950 |
+
)
|
951 |
+
position_ids = position_ids.unsqueeze(0)
|
952 |
+
|
953 |
+
if inputs_embeds is None:
|
954 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
955 |
+
# embed positions
|
956 |
+
if self._attn_implementation == "flash_attention_2":
|
957 |
+
# 2d mask is passed through the layers
|
958 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
959 |
+
# for output_attentions case used fallback to eager attention realization
|
960 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
961 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
962 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
963 |
+
)
|
964 |
+
else:
|
965 |
+
# 4d mask is passed through the layers
|
966 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
967 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
968 |
+
)
|
969 |
+
|
970 |
+
hidden_states = inputs_embeds
|
971 |
+
|
972 |
+
# decoder layers
|
973 |
+
all_hidden_states = () if output_hidden_states else None
|
974 |
+
all_self_attns = () if output_attentions else None
|
975 |
+
next_decoder_cache = None
|
976 |
+
|
977 |
+
for decoder_layer in self.layers:
|
978 |
+
if output_hidden_states:
|
979 |
+
all_hidden_states += (hidden_states,)
|
980 |
+
|
981 |
+
if self.gradient_checkpointing and self.training:
|
982 |
+
layer_outputs = self._gradient_checkpointing_func(
|
983 |
+
decoder_layer.__call__,
|
984 |
+
hidden_states,
|
985 |
+
attention_mask,
|
986 |
+
position_ids,
|
987 |
+
past_key_values,
|
988 |
+
output_attentions,
|
989 |
+
)
|
990 |
+
else:
|
991 |
+
layer_outputs = decoder_layer(
|
992 |
+
hidden_states,
|
993 |
+
attention_mask=attention_mask,
|
994 |
+
position_ids=position_ids,
|
995 |
+
past_key_value=past_key_values,
|
996 |
+
output_attentions=output_attentions,
|
997 |
+
use_cache=use_cache,
|
998 |
+
)
|
999 |
+
|
1000 |
+
hidden_states = layer_outputs[0]
|
1001 |
+
|
1002 |
+
if use_cache:
|
1003 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1004 |
+
|
1005 |
+
if output_attentions:
|
1006 |
+
all_self_attns += (layer_outputs[1],)
|
1007 |
+
|
1008 |
+
hidden_states = self.norm(hidden_states)
|
1009 |
+
|
1010 |
+
# add hidden states from the last decoder layer
|
1011 |
+
if output_hidden_states:
|
1012 |
+
all_hidden_states += (hidden_states,)
|
1013 |
+
|
1014 |
+
next_cache = None
|
1015 |
+
if use_cache:
|
1016 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1017 |
+
|
1018 |
+
if not return_dict:
|
1019 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1020 |
+
return BaseModelOutputWithPast(
|
1021 |
+
last_hidden_state=hidden_states,
|
1022 |
+
past_key_values=next_cache,
|
1023 |
+
hidden_states=all_hidden_states,
|
1024 |
+
attentions=all_self_attns,
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
|
1028 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM with PERSIMMON->STABLELM,Persimmon->StableLm
|
1029 |
+
class StableLmForCausalLM(StableLmPreTrainedModel):
|
1030 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1031 |
+
|
1032 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->STABLELM,Llama->StableLm
|
1033 |
+
def __init__(self, config):
|
1034 |
+
super().__init__(config)
|
1035 |
+
self.model = StableLmModel(config)
|
1036 |
+
self.vocab_size = config.vocab_size
|
1037 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1038 |
+
|
1039 |
+
# Initialize weights and apply final processing
|
1040 |
+
self.post_init()
|
1041 |
+
|
1042 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1043 |
+
def get_input_embeddings(self):
|
1044 |
+
return self.model.embed_tokens
|
1045 |
+
|
1046 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1047 |
+
def set_input_embeddings(self, value):
|
1048 |
+
self.model.embed_tokens = value
|
1049 |
+
|
1050 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1051 |
+
def get_output_embeddings(self):
|
1052 |
+
return self.lm_head
|
1053 |
+
|
1054 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1055 |
+
def set_output_embeddings(self, new_embeddings):
|
1056 |
+
self.lm_head = new_embeddings
|
1057 |
+
|
1058 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1059 |
+
def set_decoder(self, decoder):
|
1060 |
+
self.model = decoder
|
1061 |
+
|
1062 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1063 |
+
def get_decoder(self):
|
1064 |
+
return self.model
|
1065 |
+
|
1066 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
1067 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1068 |
+
# Ignore copy
|
1069 |
+
def forward(
|
1070 |
+
self,
|
1071 |
+
input_ids: torch.LongTensor = None,
|
1072 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1073 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1074 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1075 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1076 |
+
labels: Optional[torch.LongTensor] = None,
|
1077 |
+
use_cache: Optional[bool] = None,
|
1078 |
+
output_attentions: Optional[bool] = None,
|
1079 |
+
output_hidden_states: Optional[bool] = None,
|
1080 |
+
return_dict: Optional[bool] = None,
|
1081 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1082 |
+
r"""
|
1083 |
+
Args:
|
1084 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1085 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1086 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1087 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1088 |
+
|
1089 |
+
Returns:
|
1090 |
+
|
1091 |
+
Example:
|
1092 |
+
|
1093 |
+
```python
|
1094 |
+
>>> from transformers import AutoTokenizer, StableLmForCausalLM
|
1095 |
+
|
1096 |
+
>>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
1097 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
1098 |
+
|
1099 |
+
>>> prompt = "The weather is always wonderful in"
|
1100 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1101 |
+
|
1102 |
+
>>> # Generate
|
1103 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1104 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1105 |
+
'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by'
|
1106 |
+
```"""
|
1107 |
+
|
1108 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1109 |
+
output_hidden_states = (
|
1110 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1111 |
+
)
|
1112 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1113 |
+
|
1114 |
+
outputs = self.model(
|
1115 |
+
input_ids=input_ids,
|
1116 |
+
attention_mask=attention_mask,
|
1117 |
+
position_ids=position_ids,
|
1118 |
+
past_key_values=past_key_values,
|
1119 |
+
inputs_embeds=inputs_embeds,
|
1120 |
+
use_cache=use_cache,
|
1121 |
+
output_attentions=output_attentions,
|
1122 |
+
output_hidden_states=output_hidden_states,
|
1123 |
+
return_dict=return_dict,
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
hidden_states = outputs[0]
|
1127 |
+
logits = self.lm_head(hidden_states)
|
1128 |
+
|
1129 |
+
loss = None
|
1130 |
+
if labels is not None:
|
1131 |
+
# Shift so that tokens < n predict n
|
1132 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1133 |
+
shift_labels = labels[..., 1:].contiguous()
|
1134 |
+
# Flatten the tokens
|
1135 |
+
loss_fct = CrossEntropyLoss()
|
1136 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1137 |
+
shift_labels = shift_labels.view(-1)
|
1138 |
+
# Enable model parallelism
|
1139 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1140 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1141 |
+
|
1142 |
+
if not return_dict:
|
1143 |
+
output = (logits,) + outputs[1:]
|
1144 |
+
return (loss,) + output if loss is not None else output
|
1145 |
+
|
1146 |
+
return CausalLMOutputWithPast(
|
1147 |
+
loss=loss,
|
1148 |
+
logits=logits,
|
1149 |
+
past_key_values=outputs.past_key_values,
|
1150 |
+
hidden_states=outputs.hidden_states,
|
1151 |
+
attentions=outputs.attentions,
|
1152 |
+
)
|
1153 |
+
|
1154 |
+
def prepare_inputs_for_generation(
|
1155 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1156 |
+
):
|
1157 |
+
if past_key_values is not None:
|
1158 |
+
if isinstance(past_key_values, Cache):
|
1159 |
+
cache_length = past_key_values.get_seq_length()
|
1160 |
+
past_length = past_key_values.seen_tokens
|
1161 |
+
max_cache_length = past_key_values.get_max_length()
|
1162 |
+
else:
|
1163 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1164 |
+
max_cache_length = None
|
1165 |
+
|
1166 |
+
# Keep only the unprocessed tokens:
|
1167 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1168 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1169 |
+
# input)
|
1170 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1171 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1172 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1173 |
+
# input_ids based on the past_length.
|
1174 |
+
elif past_length < input_ids.shape[1]:
|
1175 |
+
input_ids = input_ids[:, past_length:]
|
1176 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1177 |
+
|
1178 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1179 |
+
if (
|
1180 |
+
max_cache_length is not None
|
1181 |
+
and attention_mask is not None
|
1182 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1183 |
+
):
|
1184 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1185 |
+
|
1186 |
+
position_ids = kwargs.get("position_ids", None)
|
1187 |
+
if attention_mask is not None and position_ids is None:
|
1188 |
+
# create position_ids on the fly for batch generation
|
1189 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1190 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1191 |
+
if past_key_values:
|
1192 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1193 |
+
|
1194 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1195 |
+
if inputs_embeds is not None and past_key_values is None:
|
1196 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1197 |
+
else:
|
1198 |
+
model_inputs = {"input_ids": input_ids}
|
1199 |
+
|
1200 |
+
model_inputs.update(
|
1201 |
+
{
|
1202 |
+
"position_ids": position_ids,
|
1203 |
+
"past_key_values": past_key_values,
|
1204 |
+
"use_cache": kwargs.get("use_cache"),
|
1205 |
+
"attention_mask": attention_mask,
|
1206 |
+
}
|
1207 |
+
)
|
1208 |
+
return model_inputs
|
1209 |
+
|
1210 |
+
@staticmethod
|
1211 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1212 |
+
reordered_past = ()
|
1213 |
+
for layer_past in past_key_values:
|
1214 |
+
reordered_past += (
|
1215 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1216 |
+
)
|
1217 |
+
return reordered_past
|
1218 |
+
|
1219 |
+
|
1220 |
+
@add_start_docstrings(
|
1221 |
+
"""
|
1222 |
+
The StableLm transformer with a sequence classification head on top (linear layer).
|
1223 |
+
|
1224 |
+
[`StableLmForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
1225 |
+
models (e.g. GPT-2) do.
|
1226 |
+
|
1227 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1228 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1229 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1230 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1231 |
+
each row of the batch).
|
1232 |
+
""",
|
1233 |
+
STABLELM_START_DOCSTRING,
|
1234 |
+
)
|
1235 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->STABLELM,Llama->StableLm
|
1236 |
+
class StableLmForSequenceClassification(StableLmPreTrainedModel):
|
1237 |
+
def __init__(self, config):
|
1238 |
+
super().__init__(config)
|
1239 |
+
self.num_labels = config.num_labels
|
1240 |
+
self.model = StableLmModel(config)
|
1241 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1242 |
+
|
1243 |
+
# Initialize weights and apply final processing
|
1244 |
+
self.post_init()
|
1245 |
+
|
1246 |
+
def get_input_embeddings(self):
|
1247 |
+
return self.model.embed_tokens
|
1248 |
+
|
1249 |
+
def set_input_embeddings(self, value):
|
1250 |
+
self.model.embed_tokens = value
|
1251 |
+
|
1252 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
1253 |
+
def forward(
|
1254 |
+
self,
|
1255 |
+
input_ids: torch.LongTensor = None,
|
1256 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1257 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1258 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1259 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1260 |
+
labels: Optional[torch.LongTensor] = None,
|
1261 |
+
use_cache: Optional[bool] = None,
|
1262 |
+
output_attentions: Optional[bool] = None,
|
1263 |
+
output_hidden_states: Optional[bool] = None,
|
1264 |
+
return_dict: Optional[bool] = None,
|
1265 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1266 |
+
r"""
|
1267 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1268 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1269 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1270 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1271 |
+
"""
|
1272 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1273 |
+
|
1274 |
+
transformer_outputs = self.model(
|
1275 |
+
input_ids,
|
1276 |
+
attention_mask=attention_mask,
|
1277 |
+
position_ids=position_ids,
|
1278 |
+
past_key_values=past_key_values,
|
1279 |
+
inputs_embeds=inputs_embeds,
|
1280 |
+
use_cache=use_cache,
|
1281 |
+
output_attentions=output_attentions,
|
1282 |
+
output_hidden_states=output_hidden_states,
|
1283 |
+
return_dict=return_dict,
|
1284 |
+
)
|
1285 |
+
hidden_states = transformer_outputs[0]
|
1286 |
+
logits = self.score(hidden_states)
|
1287 |
+
|
1288 |
+
if input_ids is not None:
|
1289 |
+
batch_size = input_ids.shape[0]
|
1290 |
+
else:
|
1291 |
+
batch_size = inputs_embeds.shape[0]
|
1292 |
+
|
1293 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1294 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1295 |
+
if self.config.pad_token_id is None:
|
1296 |
+
sequence_lengths = -1
|
1297 |
+
else:
|
1298 |
+
if input_ids is not None:
|
1299 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1300 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1301 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1302 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1303 |
+
else:
|
1304 |
+
sequence_lengths = -1
|
1305 |
+
|
1306 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1307 |
+
|
1308 |
+
loss = None
|
1309 |
+
if labels is not None:
|
1310 |
+
labels = labels.to(logits.device)
|
1311 |
+
if self.config.problem_type is None:
|
1312 |
+
if self.num_labels == 1:
|
1313 |
+
self.config.problem_type = "regression"
|
1314 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1315 |
+
self.config.problem_type = "single_label_classification"
|
1316 |
+
else:
|
1317 |
+
self.config.problem_type = "multi_label_classification"
|
1318 |
+
|
1319 |
+
if self.config.problem_type == "regression":
|
1320 |
+
loss_fct = MSELoss()
|
1321 |
+
if self.num_labels == 1:
|
1322 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1323 |
+
else:
|
1324 |
+
loss = loss_fct(pooled_logits, labels)
|
1325 |
+
elif self.config.problem_type == "single_label_classification":
|
1326 |
+
loss_fct = CrossEntropyLoss()
|
1327 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1328 |
+
elif self.config.problem_type == "multi_label_classification":
|
1329 |
+
loss_fct = BCEWithLogitsLoss()
|
1330 |
+
loss = loss_fct(pooled_logits, labels)
|
1331 |
+
if not return_dict:
|
1332 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1333 |
+
return ((loss,) + output) if loss is not None else output
|
1334 |
+
|
1335 |
+
return SequenceClassifierOutputWithPast(
|
1336 |
+
loss=loss,
|
1337 |
+
logits=pooled_logits,
|
1338 |
+
past_key_values=transformer_outputs.past_key_values,
|
1339 |
+
hidden_states=transformer_outputs.hidden_states,
|
1340 |
+
attentions=transformer_outputs.attentions,
|
1341 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "<|endoftext|>"
|
5 |
+
}
|
stablelm-2-zephyr-1_6b-OpenVINO-4bit.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c284c859d1c39afc3812135a72180da0034788dfa3db459d55334184343004c8
|
3 |
+
size 1048432977
|
stablelm-2-zephyr-1_6b-OpenVINO-4bit.xml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15fc44d0b227c3392dfed17ec1d96bc22462857cf3470336fa1c37ce7b3e4c34
|
3 |
+
size 2885612
|
stablelm-2-zephyr-1_6b-Q4_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:342f89616e40d79e57ff213d68fcdcab18a94f7370c1fb9526ff57f3e93721e3
|
3 |
+
size 982781952
|
stablelm-2-zephyr-1_6b-Q4_1.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5869cc65f65e361979a1e0e67353354e1a5088c4e0f61a3789bc9bf4f0b435b5
|
3 |
+
size 1072697344
|
stablelm-2-zephyr-1_6b-Q5_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c66d5136b2ec07d52d120717b5aa7f4c9177a9b33cfcc110ca7bf7aa5d95d10
|
3 |
+
size 1187680256
|
stablelm-2-zephyr-1_6b-Q8_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2607e6fcb3de0b7a7230f2fc12912541173d3eba80d92f141b1968e1552f0c6
|
3 |
+
size 1751879680
|
stablelm-2-zephyr-1_6b.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:852f1734d003afd6a5ac099d3a2c3b3a673e434ffcbb5e695ff4c45b5b8e18b8
|
3 |
+
size 3293286336
|
tokenization_arcade100k.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) 2023 Alibaba Cloud & Stability AI.
|
3 |
+
#
|
4 |
+
# Tongyi Qianwen LICENSE AGREEMENT:
|
5 |
+
# https://github.com/QwenLM/Qwen/blob/5aa84bdfd3237b37f01bc88cd49b3279b9a71d0b/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
|
6 |
+
"""Tokenization classes for Arcade100k."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import os
|
10 |
+
import unicodedata
|
11 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
12 |
+
|
13 |
+
import tiktoken
|
14 |
+
from transformers.utils import logging
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
VOCAB_FILES_NAMES = {"vocab_file": "arcade100k.tiktoken"}
|
20 |
+
NAME = "arcade100k"
|
21 |
+
|
22 |
+
|
23 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
24 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
25 |
+
contents = f.read()
|
26 |
+
return {
|
27 |
+
base64.b64decode(token): int(rank)
|
28 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
ENDOFTEXT = "<|endoftext|>"
|
33 |
+
FIM = [
|
34 |
+
"<|fim_prefix|>",
|
35 |
+
"<|fim_middle|>",
|
36 |
+
"<|fim_suffix|>",
|
37 |
+
"<|fim_pad|>",
|
38 |
+
]
|
39 |
+
# `StarCoder` Tokens
|
40 |
+
CODE = [
|
41 |
+
"<gh_stars>",
|
42 |
+
"<filename>",
|
43 |
+
"<issue_start>",
|
44 |
+
"<issue_comment>",
|
45 |
+
"<issue_closed>",
|
46 |
+
"<jupyter_start>",
|
47 |
+
"<jupyter_text>",
|
48 |
+
"<jupyter_code>",
|
49 |
+
"<jupyter_output>",
|
50 |
+
"<empty_output>",
|
51 |
+
"<commit_before>",
|
52 |
+
"<commit_msg>",
|
53 |
+
"<commit_after>",
|
54 |
+
"<reponame>",
|
55 |
+
]
|
56 |
+
CHAT = [
|
57 |
+
"<|im_start|>", # Chat: Input message start
|
58 |
+
"<|im_end|>", # Chat: Input message end
|
59 |
+
]
|
60 |
+
PAUSE = "<|pause|>" # Think before you speak (https://arxiv.org/abs/2310.02226)
|
61 |
+
REGISTERS = [
|
62 |
+
f"<|reg{i}|>" for i in range(0, 8)
|
63 |
+
] # Register 0 sink token (https://arxiv.org/abs/2309.17453)
|
64 |
+
ENDOFPROMPT = "<|endofprompt|>"
|
65 |
+
SPECIAL_TOKENS_NAMES = (
|
66 |
+
[ENDOFTEXT]
|
67 |
+
+ FIM
|
68 |
+
+ CODE
|
69 |
+
+ [ENDOFPROMPT]
|
70 |
+
+ CHAT
|
71 |
+
+ [PAUSE]
|
72 |
+
+ REGISTERS
|
73 |
+
+ ["<|extra0|>"]
|
74 |
+
)
|
75 |
+
START_ID = 100257
|
76 |
+
SPECIAL_TOKENS = {t: START_ID + i for i, t in enumerate(SPECIAL_TOKENS_NAMES)}
|
77 |
+
|
78 |
+
|
79 |
+
def _arcade100k(vocab_file: str):
|
80 |
+
mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
81 |
+
|
82 |
+
return {
|
83 |
+
"name": NAME,
|
84 |
+
"pat_str": r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""",
|
85 |
+
"mergeable_ranks": mergeable_ranks,
|
86 |
+
"special_tokens": SPECIAL_TOKENS,
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
class Arcade100kTokenizer(PreTrainedTokenizer):
|
91 |
+
"""
|
92 |
+
Construct a Arcade100k tokenizer backed by `tiktoken`.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
vocab_file (`str`):
|
96 |
+
Path to the vocabulary file.
|
97 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
98 |
+
How to handle errors in decoding UTF-8 byte sequences.
|
99 |
+
WARNING: the default behaviour of this function is lossy, since decoded bytes are not
|
100 |
+
guaranteed to be valid UTF-8. You can control this behaviour using the `errors` parameter,
|
101 |
+
for instance, setting `errors=strict`.
|
102 |
+
"""
|
103 |
+
|
104 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
105 |
+
model_input_names = ["input_ids", "attention_mask"]
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
vocab_file: str,
|
110 |
+
errors: str = "replace",
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
super().__init__(errors=errors, **kwargs)
|
114 |
+
self.errors = errors
|
115 |
+
|
116 |
+
self._tiktoken_config = _arcade100k(vocab_file)
|
117 |
+
self.tokenizer = tiktoken.Encoding(**self._tiktoken_config)
|
118 |
+
|
119 |
+
# TODO: Remove this assertion
|
120 |
+
assert (
|
121 |
+
len(self.tokenizer._mergeable_ranks)
|
122 |
+
+ len(self.tokenizer._special_tokens)
|
123 |
+
+ 1
|
124 |
+
== self.tokenizer.n_vocab
|
125 |
+
), f"{len(self.tokenizer._mergeable_ranks) + len(self.tokenizer._special_tokens)} != {self.tokenizer.n_vocab} in encoding"
|
126 |
+
|
127 |
+
self.decoder = {i: n for n, i in self.tokenizer._mergeable_ranks.items()}
|
128 |
+
self.decoder.update({i: n for n, i in self.tokenizer._special_tokens.items()})
|
129 |
+
# Provide default `eos_token` and `pad_token`
|
130 |
+
if self.eos_token is None:
|
131 |
+
self.eos_token = self.decoder[self.tokenizer.eot_token]
|
132 |
+
if self.pad_token is None:
|
133 |
+
self.pad_token = self.decoder[self.tokenizer.pad_token]
|
134 |
+
|
135 |
+
# Expose for convenience
|
136 |
+
self.mergeable_ranks = self.tokenizer._mergeable_ranks
|
137 |
+
self.special_tokens = self.tokenizer._special_tokens
|
138 |
+
|
139 |
+
def __len__(self):
|
140 |
+
return self.tokenizer.n_vocab
|
141 |
+
|
142 |
+
def __getstate__(self):
|
143 |
+
# Required for `pickle` support
|
144 |
+
state = self.__dict__.copy()
|
145 |
+
del state["tokenizer"]
|
146 |
+
return state
|
147 |
+
|
148 |
+
def __setstate__(self, state):
|
149 |
+
self.__dict__.update(state)
|
150 |
+
self.tokenizer = tiktoken.Encoding(**self._tiktoken_config)
|
151 |
+
|
152 |
+
@property
|
153 |
+
def vocab_size(self):
|
154 |
+
return self.tokenizer.n_vocab
|
155 |
+
|
156 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
157 |
+
return self.tokenizer._mergeable_ranks
|
158 |
+
|
159 |
+
def convert_tokens_to_ids(
|
160 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
161 |
+
) -> List[int]:
|
162 |
+
ids = []
|
163 |
+
if isinstance(tokens, (str, bytes)):
|
164 |
+
if tokens in self.tokenizer._special_tokens:
|
165 |
+
return self.tokenizer._special_tokens[tokens]
|
166 |
+
else:
|
167 |
+
return self.tokenizer._mergeable_ranks.get(tokens)
|
168 |
+
for token in tokens:
|
169 |
+
if token in self.tokenizer._special_tokens:
|
170 |
+
ids.append(self.tokenizer._special_tokens[token])
|
171 |
+
else:
|
172 |
+
ids.append(self.tokenizer._mergeable_ranks.get(token))
|
173 |
+
return ids
|
174 |
+
|
175 |
+
def _add_tokens(
|
176 |
+
self,
|
177 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
178 |
+
special_tokens: bool = False,
|
179 |
+
) -> int:
|
180 |
+
if not special_tokens and new_tokens:
|
181 |
+
raise ValueError("Adding regular tokens is not supported")
|
182 |
+
for token in new_tokens:
|
183 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
184 |
+
if surface_form not in SPECIAL_TOKENS:
|
185 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
186 |
+
return 0
|
187 |
+
|
188 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
189 |
+
"""
|
190 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
`Tuple(str)`: Paths to the files saved.
|
194 |
+
"""
|
195 |
+
file_path = os.path.join(save_directory, "arcade100k.tiktoken")
|
196 |
+
with open(file_path, "w", encoding="utf8") as w:
|
197 |
+
for k, v in self.tokenizer._mergeable_ranks.items():
|
198 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
199 |
+
w.write(line)
|
200 |
+
return (file_path,)
|
201 |
+
|
202 |
+
def tokenize(
|
203 |
+
self,
|
204 |
+
text: str,
|
205 |
+
allowed_special: Union[Set, str] = "all",
|
206 |
+
disallowed_special: Union[Collection, str] = (),
|
207 |
+
**kwargs,
|
208 |
+
) -> List[Union[bytes, str]]:
|
209 |
+
"""
|
210 |
+
Converts a string in a sequence of tokens.
|
211 |
+
|
212 |
+
Args:
|
213 |
+
text (`str`):
|
214 |
+
The sequence to be encoded.
|
215 |
+
allowed_special (`Literal["all"]` or `set`):
|
216 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
217 |
+
Default to "all".
|
218 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
219 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
220 |
+
Default to an empty tuple.
|
221 |
+
|
222 |
+
kwargs (additional keyword arguments, *optional*):
|
223 |
+
Will be passed to the underlying model specific encode method.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
`List[bytes|str]`: The list of tokens.
|
227 |
+
"""
|
228 |
+
tokens = []
|
229 |
+
text = unicodedata.normalize("NFC", text)
|
230 |
+
|
231 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
232 |
+
for t in self.tokenizer.encode(
|
233 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
234 |
+
):
|
235 |
+
tokens.append(self.decoder[t])
|
236 |
+
return tokens
|
237 |
+
|
238 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
239 |
+
"""
|
240 |
+
Converts a sequence of tokens in a single string.
|
241 |
+
"""
|
242 |
+
text = ""
|
243 |
+
temp = b""
|
244 |
+
for t in tokens:
|
245 |
+
if isinstance(t, str):
|
246 |
+
if temp:
|
247 |
+
text += temp.decode("utf-8", errors=self.errors)
|
248 |
+
temp = b""
|
249 |
+
text += t
|
250 |
+
elif isinstance(t, bytes):
|
251 |
+
temp += t
|
252 |
+
else:
|
253 |
+
raise TypeError("token should only be of type types or str")
|
254 |
+
if temp:
|
255 |
+
text += temp.decode("utf-8", errors=self.errors)
|
256 |
+
return text
|
257 |
+
|
258 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
259 |
+
"""Converts an id to a token, special tokens included"""
|
260 |
+
if index in self.decoder:
|
261 |
+
return self.decoder[index]
|
262 |
+
raise ValueError("unknown ids")
|
263 |
+
|
264 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
265 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
266 |
+
if token in self.tokenizer._special_tokens:
|
267 |
+
return self.tokenizer._special_tokens[token]
|
268 |
+
if token in self.tokenizer._mergeable_ranks:
|
269 |
+
return self.tokenizer._mergeable_ranks[token]
|
270 |
+
raise ValueError("unknown token")
|
271 |
+
|
272 |
+
def _tokenize(self, text: str, **kwargs):
|
273 |
+
"""
|
274 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
275 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
276 |
+
|
277 |
+
Do NOT take care of added tokens.
|
278 |
+
"""
|
279 |
+
raise NotImplementedError
|
280 |
+
|
281 |
+
def _decode(
|
282 |
+
self,
|
283 |
+
token_ids: Union[int, List[int]],
|
284 |
+
skip_special_tokens: bool = False,
|
285 |
+
errors: str = None,
|
286 |
+
**kwargs,
|
287 |
+
) -> str:
|
288 |
+
if isinstance(token_ids, int):
|
289 |
+
token_ids = [token_ids]
|
290 |
+
if skip_special_tokens:
|
291 |
+
token_ids = [i for i in token_ids if i < self.tokenizer.eot_token]
|
292 |
+
return self.tokenizer.decode(token_ids)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenization_arcade100k.Arcade100kTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"bos_token": "<|endoftext|>",
|
10 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"eos_token": "<|endoftext|>",
|
13 |
+
"errors": "replace",
|
14 |
+
"model_max_length": 2048,
|
15 |
+
"pad_token": "<|endoftext|>",
|
16 |
+
"tokenizer_class": "Arcade100kTokenizer"
|
17 |
+
}
|