|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wnut_17 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ChatGPT_Project |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wnut_17 |
|
type: wnut_17 |
|
config: wnut_17 |
|
split: test |
|
args: wnut_17 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.36904761904761907 |
|
- name: Recall |
|
type: recall |
|
value: 0.11492122335495829 |
|
- name: F1 |
|
type: f1 |
|
value: 0.1752650176678445 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9319911088313243 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ChatGPT_Project |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wnut_17 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3070 |
|
- Precision: 0.3690 |
|
- Recall: 0.1149 |
|
- F1: 0.1753 |
|
- Accuracy: 0.9320 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 213 | 0.4153 | 0.0 | 0.0 | 0.0 | 0.9256 | |
|
| No log | 2.0 | 426 | 0.3484 | 0.0 | 0.0 | 0.0 | 0.9256 | |
|
| 0.6399 | 3.0 | 639 | 0.3303 | 0.2222 | 0.0037 | 0.0073 | 0.9256 | |
|
| 0.6399 | 4.0 | 852 | 0.3233 | 0.2179 | 0.0158 | 0.0294 | 0.9269 | |
|
| 0.2004 | 5.0 | 1065 | 0.3164 | 0.3152 | 0.0482 | 0.0836 | 0.9286 | |
|
| 0.2004 | 6.0 | 1278 | 0.3148 | 0.3421 | 0.0723 | 0.1194 | 0.9299 | |
|
| 0.2004 | 7.0 | 1491 | 0.3100 | 0.3653 | 0.0918 | 0.1467 | 0.9309 | |
|
| 0.1861 | 8.0 | 1704 | 0.3083 | 0.3522 | 0.0982 | 0.1536 | 0.9312 | |
|
| 0.1861 | 9.0 | 1917 | 0.3057 | 0.3663 | 0.1168 | 0.1771 | 0.9320 | |
|
| 0.1782 | 10.0 | 2130 | 0.3070 | 0.3690 | 0.1149 | 0.1753 | 0.9320 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|