Text Generation
Transformers
PyTorch
Italian
English
mistral
conversational
text-generation-inference
Inference Endpoints
galatolo commited on
Commit
458f5ed
โ€ข
1 Parent(s): f2a3166

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - andreabac3/Quora-Italian-Fauno-Baize
5
+ - andreabac3/StackOverflow-Italian-Fauno-Baize
6
+ - andreabac3/MedQuaAD-Italian-Fauno-Baize
7
+ language:
8
+ - it
9
+ - en
10
+ pipeline_tag: text-generation
11
+ ---
12
+
13
+ # cerbero-7b Italian LLM ๐Ÿš€
14
+
15
+ > ๐Ÿ“ข **cerbero-7b** is an **Italian Large Language Model** (LLM) with a large context length of **8192 tokens** which excels in linguistic benchmarks.
16
+
17
+
18
+ <p align="center">
19
+ <img width="300" height="300" src="./README.md.d/cerbero.png">
20
+ </p>
21
+
22
+ Built on **mistral-7b**, which outperforms Llama2 13B across all benchmarks and surpasses Llama1 34B in numerous metrics.
23
+
24
+ **cerbero-7b** is specifically crafted to fill the void in Italy's AI landscape.
25
+
26
+ A **cambrian explosion** of **Italian Language Models** is essential for building advanced AI architectures that can cater to the diverse needs of the population.
27
+
28
+ **cerbero-7b**, alongside companions like [**Camoscio**](https://github.com/teelinsan/camoscio) and [**Fauno**](https://github.com/RSTLess-research/Fauno-Italian-LLM), aims to kick-start this revolution in Italy, ushering in an era where sophisticated **AI solutions** can seamlessly interact with and understand the intricacies of the **Italian language**, thereby empowering **innovation** across **industries** and fostering a deeper **connection** between **technology** and the **people** it serves.
29
+
30
+ **cerbero-7b** is released under the **permissive** Apache 2.0 **license**, allowing **unrestricted usage**, even **for commercial applications**.
31
+
32
+ ## Why Cerbero? ๐Ÿค”
33
+
34
+ The name "Cerbero," inspired by the three-headed dog that guards the gates of the Underworld in Greek mythology, encapsulates the essence of our model, drawing strength from three foundational pillars:
35
+
36
+ - **Base Model: mistral-7b** ๐Ÿ—๏ธ
37
+ cerbero-7b builds upon the formidable **mistral-7b** as its base model. This choice ensures a robust foundation, leveraging the power and capabilities of a cutting-edge language model.
38
+
39
+ - **Datasets: Fauno Dataset** ๐Ÿ“š
40
+ Utilizing the comprehensive **fauno dataset**, cerbero-7b gains a diverse and rich understanding of the Italian language. The incorporation of varied data sources contributes to its versatility in handling a wide array of tasks.
41
+
42
+ - **Licensing: Apache 2.0** ๐Ÿ•Š๏ธ
43
+ Released under the **permissive Apache 2.0 license**, cerbero-7b promotes openness and collaboration. This licensing choice empowers developers with the freedom for unrestricted usage, fostering a community-driven approach to advancing AI in Italy and beyond.
44
+
45
+ ## Training Details ๐Ÿš€
46
+
47
+ cerbero-7b is **fully fine-tuned**, distinguishing itself from LORA or QLORA fine-tunes.
48
+ The model is trained on an expansive Italian Large Language Model (LLM) using synthetic datasets generated through dynamic self-chat.
49
+
50
+ ### Dataset Composition ๐Ÿ“Š
51
+
52
+ We employed the [Fauno training dataset](https://github.com/RSTLess-research/Fauno-Italian-LLM). The training data covers a broad spectrum, incorporating:
53
+
54
+ - **Medical Data:** Capturing nuances in medical language. ๐Ÿฉบ
55
+ - **Technical Content:** Extracted from Stack Overflow to enhance the model's understanding of technical discourse. ๐Ÿ’ป
56
+ - **Quora Discussions:** Providing valuable insights into common queries and language usage. โ“
57
+ - **Alpaca Data Translation:** Italian-translated content from Alpaca contributes to the model's language richness and contextual understanding. ๐Ÿฆ™
58
+
59
+ ### Training Setup โš™๏ธ
60
+
61
+ cerbero-7b is trained on an NVIDIA DGX H100:
62
+
63
+ - **Hardware:** Utilizing 8xH100 GPUs, each with 80 GB VRAM. ๐Ÿ–ฅ๏ธ
64
+ - **Parallelism:** DeepSpeed Zero stage 1 parallelism for optimal training efficiency.โœจ
65
+
66
+ The model has been trained for **3 epochs**, ensuring a convergence of knowledge and proficiency in handling diverse linguistic tasks.
67
+
68
+ ## Getting Started ๐Ÿš€
69
+
70
+ You can load cerbero-7b using [๐Ÿค—transformers](https://huggingface.co/docs/transformers/index)
71
+
72
+
73
+ ```python
74
+ import torch
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
+
77
+ model = AutoModelForCausalLM.from_pretrained("galatolo/cerbero-7b")
78
+ tokenizer = AutoTokenizer.from_pretrained("galatolo/cerbero-7b")
79
+
80
+ prompt = """Questa รจ una conversazione tra un umano ed un assistente AI.
81
+ [|Umano|] Come posso distinguere un AI da un umano?
82
+ [|AI|]"""
83
+
84
+ input_ids = tokenizer(prompt, return_tensors='pt').input_ids
85
+ with torch.no_grad():
86
+ output_ids = model.generate(input_ids, max_new_tokens=1024)
87
+
88
+ generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
89
+ print(generated_text)
90
+ ```