End of training
Browse files
README.md
CHANGED
@@ -20,12 +20,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Binary: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -59,75 +59,51 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
62 |
-
| No log | 0.19 | 50 |
|
63 |
-
| No log | 0.38 | 100 | 3.
|
64 |
-
| No log | 0.58 | 150 | 3.
|
65 |
-
| No log | 0.77 | 200 | 3.
|
66 |
-
| No log | 0.96 | 250 |
|
67 |
-
| No log | 1.15 | 300 | 2.
|
68 |
-
| No log | 1.34 | 350 | 2.
|
69 |
-
| No log | 1.53 | 400 | 2.
|
70 |
-
| No log | 1.73 | 450 | 2.
|
71 |
-
| 3.
|
72 |
-
| 3.
|
73 |
-
| 3.
|
74 |
-
| 3.
|
75 |
-
| 3.
|
76 |
-
| 3.
|
77 |
-
| 3.
|
78 |
-
| 3.
|
79 |
-
| 3.
|
80 |
-
| 3.
|
81 |
-
| 2.
|
82 |
-
| 2.
|
83 |
-
| 2.
|
84 |
-
| 2.
|
85 |
-
| 2.
|
86 |
-
| 2.
|
87 |
-
| 2.
|
88 |
-
| 2.
|
89 |
-
| 2.
|
90 |
-
| 2.
|
91 |
-
| 1.
|
92 |
-
| 1.
|
93 |
-
| 1.
|
94 |
-
| 1.
|
95 |
-
| 1.
|
96 |
-
| 1.
|
97 |
-
| 1.
|
98 |
-
| 1.
|
99 |
-
| 1.
|
100 |
-
| 1.
|
101 |
-
| 1.
|
102 |
-
| 1.
|
103 |
-
| 1.
|
104 |
-
| 1.
|
105 |
-
| 1.
|
106 |
-
| 1.
|
107 |
-
| 1.2457 | 8.82 | 2300 | 0.5744 | 0.8248 | 0.8493 | 0.8248 | 0.8208 | 0.8757 |
|
108 |
-
| 1.2457 | 9.01 | 2350 | 0.5577 | 0.8410 | 0.8650 | 0.8410 | 0.8344 | 0.8871 |
|
109 |
-
| 1.2457 | 9.2 | 2400 | 0.5493 | 0.8275 | 0.8429 | 0.8275 | 0.8228 | 0.8784 |
|
110 |
-
| 1.2457 | 9.4 | 2450 | 0.4822 | 0.8679 | 0.8913 | 0.8679 | 0.8654 | 0.9078 |
|
111 |
-
| 1.0978 | 9.59 | 2500 | 0.4880 | 0.8464 | 0.8627 | 0.8464 | 0.8405 | 0.8938 |
|
112 |
-
| 1.0978 | 9.78 | 2550 | 0.5233 | 0.8625 | 0.8771 | 0.8625 | 0.8520 | 0.9038 |
|
113 |
-
| 1.0978 | 9.97 | 2600 | 0.4864 | 0.8733 | 0.8903 | 0.8733 | 0.8693 | 0.9108 |
|
114 |
-
| 1.0978 | 10.16 | 2650 | 0.5167 | 0.8706 | 0.8932 | 0.8706 | 0.8649 | 0.9086 |
|
115 |
-
| 1.0978 | 10.35 | 2700 | 0.4831 | 0.8706 | 0.8872 | 0.8706 | 0.8676 | 0.9086 |
|
116 |
-
| 1.0978 | 10.55 | 2750 | 0.4824 | 0.8760 | 0.8982 | 0.8760 | 0.8741 | 0.9132 |
|
117 |
-
| 1.0978 | 10.74 | 2800 | 0.5156 | 0.8598 | 0.8850 | 0.8598 | 0.8561 | 0.9011 |
|
118 |
-
| 1.0978 | 10.93 | 2850 | 0.5065 | 0.8895 | 0.9124 | 0.8895 | 0.8873 | 0.9210 |
|
119 |
-
| 1.0978 | 11.12 | 2900 | 0.4637 | 0.8787 | 0.8990 | 0.8787 | 0.8772 | 0.9143 |
|
120 |
-
| 1.0978 | 11.31 | 2950 | 0.4574 | 0.8922 | 0.9056 | 0.8922 | 0.8908 | 0.9232 |
|
121 |
-
| 0.9986 | 11.51 | 3000 | 0.5472 | 0.8760 | 0.9029 | 0.8760 | 0.8755 | 0.9124 |
|
122 |
-
| 0.9986 | 11.7 | 3050 | 0.5353 | 0.8679 | 0.8911 | 0.8679 | 0.8642 | 0.9108 |
|
123 |
-
| 0.9986 | 11.89 | 3100 | 0.4301 | 0.8679 | 0.8818 | 0.8679 | 0.8617 | 0.9067 |
|
124 |
-
| 0.9986 | 12.08 | 3150 | 0.5122 | 0.8544 | 0.8746 | 0.8544 | 0.8520 | 0.8957 |
|
125 |
-
| 0.9986 | 12.27 | 3200 | 0.4837 | 0.8922 | 0.9080 | 0.8922 | 0.8888 | 0.9229 |
|
126 |
-
| 0.9986 | 12.46 | 3250 | 0.5032 | 0.8706 | 0.8908 | 0.8706 | 0.8669 | 0.9078 |
|
127 |
-
| 0.9986 | 12.66 | 3300 | 0.5752 | 0.8544 | 0.8710 | 0.8544 | 0.8479 | 0.8957 |
|
128 |
-
| 0.9986 | 12.85 | 3350 | 0.6008 | 0.8491 | 0.8737 | 0.8491 | 0.8428 | 0.8935 |
|
129 |
-
| 0.9986 | 13.04 | 3400 | 0.4820 | 0.8733 | 0.8960 | 0.8733 | 0.8701 | 0.9127 |
|
130 |
-
| 0.9986 | 13.23 | 3450 | 0.5366 | 0.8706 | 0.8951 | 0.8706 | 0.8682 | 0.9078 |
|
131 |
|
132 |
|
133 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.5817
|
24 |
+
- Accuracy: 0.8356
|
25 |
+
- Precision: 0.8647
|
26 |
+
- Recall: 0.8356
|
27 |
+
- F1: 0.8286
|
28 |
+
- Binary: 0.8852
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
62 |
+
| No log | 0.19 | 50 | 4.0265 | 0.0404 | 0.0071 | 0.0404 | 0.0079 | 0.3011 |
|
63 |
+
| No log | 0.38 | 100 | 3.5428 | 0.0485 | 0.0048 | 0.0485 | 0.0080 | 0.3286 |
|
64 |
+
| No log | 0.58 | 150 | 3.3405 | 0.0836 | 0.0175 | 0.0836 | 0.0251 | 0.3555 |
|
65 |
+
| No log | 0.77 | 200 | 3.2238 | 0.0809 | 0.0143 | 0.0809 | 0.0216 | 0.3512 |
|
66 |
+
| No log | 0.96 | 250 | 3.1041 | 0.0728 | 0.0135 | 0.0728 | 0.0202 | 0.3493 |
|
67 |
+
| No log | 1.15 | 300 | 2.9851 | 0.1078 | 0.0517 | 0.1078 | 0.0480 | 0.3730 |
|
68 |
+
| No log | 1.34 | 350 | 2.8525 | 0.1779 | 0.0780 | 0.1779 | 0.0876 | 0.4197 |
|
69 |
+
| No log | 1.53 | 400 | 2.7647 | 0.1752 | 0.1108 | 0.1752 | 0.1064 | 0.4221 |
|
70 |
+
| No log | 1.73 | 450 | 2.5521 | 0.2291 | 0.1539 | 0.2291 | 0.1450 | 0.4547 |
|
71 |
+
| 3.3693 | 1.92 | 500 | 2.4121 | 0.2372 | 0.1655 | 0.2372 | 0.1618 | 0.4668 |
|
72 |
+
| 3.3693 | 2.11 | 550 | 2.2312 | 0.2992 | 0.2286 | 0.2992 | 0.2185 | 0.5081 |
|
73 |
+
| 3.3693 | 2.3 | 600 | 2.0065 | 0.4124 | 0.2985 | 0.4124 | 0.3133 | 0.5865 |
|
74 |
+
| 3.3693 | 2.49 | 650 | 1.8816 | 0.4313 | 0.3359 | 0.4313 | 0.3461 | 0.6013 |
|
75 |
+
| 3.3693 | 2.68 | 700 | 1.8069 | 0.4906 | 0.4702 | 0.4906 | 0.4308 | 0.6426 |
|
76 |
+
| 3.3693 | 2.88 | 750 | 1.6310 | 0.5418 | 0.4981 | 0.5418 | 0.4728 | 0.6803 |
|
77 |
+
| 3.3693 | 3.07 | 800 | 1.5274 | 0.5580 | 0.5219 | 0.5580 | 0.5002 | 0.6908 |
|
78 |
+
| 3.3693 | 3.26 | 850 | 1.3417 | 0.6415 | 0.6343 | 0.6415 | 0.5980 | 0.7544 |
|
79 |
+
| 3.3693 | 3.45 | 900 | 1.3121 | 0.6173 | 0.6059 | 0.6173 | 0.5690 | 0.7334 |
|
80 |
+
| 3.3693 | 3.64 | 950 | 1.2298 | 0.6523 | 0.6501 | 0.6523 | 0.6183 | 0.7577 |
|
81 |
+
| 2.2303 | 3.84 | 1000 | 1.1427 | 0.7197 | 0.7323 | 0.7197 | 0.6897 | 0.8040 |
|
82 |
+
| 2.2303 | 4.03 | 1050 | 1.0947 | 0.6765 | 0.6891 | 0.6765 | 0.6387 | 0.7741 |
|
83 |
+
| 2.2303 | 4.22 | 1100 | 1.1233 | 0.6361 | 0.6473 | 0.6361 | 0.6054 | 0.7447 |
|
84 |
+
| 2.2303 | 4.41 | 1150 | 0.9765 | 0.7547 | 0.7606 | 0.7547 | 0.7331 | 0.8296 |
|
85 |
+
| 2.2303 | 4.6 | 1200 | 0.9206 | 0.7547 | 0.7546 | 0.7547 | 0.7270 | 0.8305 |
|
86 |
+
| 2.2303 | 4.79 | 1250 | 0.8658 | 0.7790 | 0.7868 | 0.7790 | 0.7625 | 0.8456 |
|
87 |
+
| 2.2303 | 4.99 | 1300 | 0.8961 | 0.7385 | 0.7576 | 0.7385 | 0.7254 | 0.8186 |
|
88 |
+
| 2.2303 | 5.18 | 1350 | 0.7709 | 0.8005 | 0.8185 | 0.8005 | 0.7912 | 0.8596 |
|
89 |
+
| 2.2303 | 5.37 | 1400 | 0.7638 | 0.7925 | 0.8118 | 0.7925 | 0.7760 | 0.8547 |
|
90 |
+
| 2.2303 | 5.56 | 1450 | 0.7085 | 0.8194 | 0.8415 | 0.8194 | 0.8081 | 0.8741 |
|
91 |
+
| 1.6078 | 5.75 | 1500 | 0.7230 | 0.7790 | 0.8195 | 0.7790 | 0.7739 | 0.8456 |
|
92 |
+
| 1.6078 | 5.94 | 1550 | 0.6475 | 0.7951 | 0.8174 | 0.7951 | 0.7813 | 0.8558 |
|
93 |
+
| 1.6078 | 6.14 | 1600 | 0.6910 | 0.7844 | 0.8082 | 0.7844 | 0.7686 | 0.8504 |
|
94 |
+
| 1.6078 | 6.33 | 1650 | 0.6233 | 0.8194 | 0.8462 | 0.8194 | 0.8111 | 0.8730 |
|
95 |
+
| 1.6078 | 6.52 | 1700 | 0.6599 | 0.8059 | 0.8429 | 0.8059 | 0.8031 | 0.8633 |
|
96 |
+
| 1.6078 | 6.71 | 1750 | 0.6999 | 0.7925 | 0.8119 | 0.7925 | 0.7751 | 0.8550 |
|
97 |
+
| 1.6078 | 6.9 | 1800 | 0.6271 | 0.8140 | 0.8266 | 0.8140 | 0.8018 | 0.8701 |
|
98 |
+
| 1.6078 | 7.09 | 1850 | 0.5545 | 0.8329 | 0.8557 | 0.8329 | 0.8288 | 0.8822 |
|
99 |
+
| 1.6078 | 7.29 | 1900 | 0.6343 | 0.8032 | 0.8179 | 0.8032 | 0.7930 | 0.8625 |
|
100 |
+
| 1.6078 | 7.48 | 1950 | 0.6007 | 0.8194 | 0.8447 | 0.8194 | 0.8136 | 0.8728 |
|
101 |
+
| 1.2974 | 7.67 | 2000 | 0.5878 | 0.8356 | 0.8674 | 0.8356 | 0.8333 | 0.8841 |
|
102 |
+
| 1.2974 | 7.86 | 2050 | 0.6410 | 0.8086 | 0.8344 | 0.8086 | 0.8011 | 0.8652 |
|
103 |
+
| 1.2974 | 8.05 | 2100 | 0.6430 | 0.8005 | 0.8201 | 0.8005 | 0.7894 | 0.8598 |
|
104 |
+
| 1.2974 | 8.25 | 2150 | 0.5540 | 0.8221 | 0.8414 | 0.8221 | 0.8177 | 0.8747 |
|
105 |
+
| 1.2974 | 8.44 | 2200 | 0.5511 | 0.8356 | 0.8635 | 0.8356 | 0.8317 | 0.8833 |
|
106 |
+
| 1.2974 | 8.63 | 2250 | 0.5817 | 0.8356 | 0.8647 | 0.8356 | 0.8286 | 0.8852 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
### Framework versions
|
runs/Jul11_02-00-27_LAPTOP-1GID9RGH/events.out.tfevents.1720638028.LAPTOP-1GID9RGH.11744.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7867033909d8f5da8488ec04e784367e73c8de64f8ad11671e83ade0a732e50
|
3 |
+
size 33705
|