metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- >-
fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
metrics:
- wer
model-index:
- name: whisper-medium-pt-3000h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: >-
fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
default
type: >-
fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
args: default
metrics:
- name: Wer
type: wer
value: 0.11007210455159983
whisper-medium-pt-3000h
This model is a fine-tuned version of openai/whisper-medium on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset. It achieves the following results on the evaluation set:
- Loss: 0.9306
- Wer: 0.1101
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4423 | 0.2 | 20000 | 0.4723 | 0.1633 |
0.4963 | 0.39 | 40000 | 0.4921 | 0.1547 |
0.3853 | 0.59 | 60000 | 0.5099 | 0.1470 |
0.37 | 0.79 | 80000 | 0.4753 | 0.1439 |
0.3615 | 0.98 | 100000 | 0.5074 | 0.1386 |
0.2394 | 1.18 | 120000 | 0.4858 | 0.1341 |
0.227 | 1.38 | 140000 | 0.5758 | 0.1323 |
0.2461 | 1.57 | 160000 | 0.5067 | 0.1322 |
0.2078 | 1.77 | 180000 | 0.5087 | 0.1291 |
0.2138 | 1.97 | 200000 | 0.5201 | 0.1273 |
0.1188 | 2.16 | 220000 | 0.6359 | 0.1265 |
0.1009 | 2.36 | 240000 | 0.6229 | 0.1253 |
0.1394 | 2.56 | 260000 | 0.5734 | 0.1231 |
0.1383 | 2.75 | 280000 | 0.5914 | 0.1213 |
0.1332 | 2.95 | 300000 | 0.6174 | 0.1212 |
0.0634 | 3.15 | 320000 | 0.6461 | 0.1190 |
0.0667 | 3.34 | 340000 | 0.6330 | 0.1211 |
0.0546 | 3.54 | 360000 | 0.6927 | 0.1190 |
0.1029 | 3.74 | 380000 | 0.6777 | 0.1184 |
0.0664 | 3.93 | 400000 | 0.6367 | 0.1161 |
0.0665 | 4.13 | 420000 | 0.7467 | 0.1171 |
0.0695 | 4.33 | 440000 | 0.7332 | 0.1164 |
0.0708 | 4.52 | 460000 | 0.7141 | 0.1171 |
0.0695 | 4.72 | 480000 | 0.6869 | 0.1169 |
0.0758 | 4.92 | 500000 | 0.7360 | 0.1153 |
0.061 | 5.11 | 520000 | 0.7594 | 0.1161 |
0.0804 | 5.31 | 540000 | 0.7640 | 0.1158 |
0.0963 | 5.51 | 560000 | 0.7848 | 0.1157 |
0.0815 | 5.7 | 580000 | 0.7635 | 0.1145 |
0.0794 | 5.9 | 600000 | 0.7566 | 0.1134 |
0.0907 | 6.1 | 620000 | 0.8152 | 0.1147 |
0.0664 | 6.29 | 640000 | 0.8405 | 0.1123 |
0.0654 | 6.49 | 660000 | 0.8278 | 0.1119 |
0.0652 | 6.69 | 680000 | 0.8267 | 0.1134 |
0.1043 | 6.88 | 700000 | 0.8254 | 0.1122 |
0.0383 | 7.08 | 720000 | 0.8719 | 0.1122 |
0.0461 | 7.28 | 740000 | 0.8640 | 0.1130 |
0.0791 | 7.47 | 760000 | 0.8990 | 0.1122 |
0.0587 | 7.67 | 780000 | 0.9107 | 0.1122 |
0.0578 | 7.87 | 800000 | 0.9060 | 0.1124 |
0.0218 | 8.06 | 820000 | 0.8845 | 0.1111 |
0.0125 | 8.26 | 840000 | 0.9072 | 0.1112 |
0.0172 | 8.46 | 860000 | 0.8899 | 0.1107 |
0.0204 | 8.65 | 880000 | 0.9149 | 0.1108 |
0.0145 | 8.85 | 900000 | 0.9097 | 0.1103 |
0.0146 | 9.05 | 920000 | 0.9084 | 0.1107 |
0.0166 | 9.24 | 940000 | 0.9053 | 0.1103 |
0.0177 | 9.44 | 960000 | 0.9193 | 0.1100 |
0.0157 | 9.64 | 980000 | 0.9212 | 0.1101 |
0.0096 | 9.83 | 1000000 | 0.9313 | 0.1103 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.1.dev0
- Tokenizers 0.15.0