frhew commited on
Commit
4fa68fb
·
verified ·
1 Parent(s): 575416b

added model card

Browse files
Files changed (1) hide show
  1. README.md +160 -0
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - de
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - german
8
+ - deutsch
9
+ - simplification
10
+ - vereinfachung
11
+ ---
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+ This model was used in our experiments in our paper: [Elaborative Simplification for German-Language Texts](https://aclanthology.org/2024.sigdial-1.3).
17
+ We have uploaded this model for transparency and replicability of our experiments.
18
+ If however you are interested in German text simplification in general, we recommend [our more recent model](https://huggingface.co/hiig-piai/simba_best_092024).
19
+
20
+ We fine-tuned [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) with a set of ca. 2000 newspaper articles which have been simplified by the Austrian Press Agency.
21
+ This model was trained with the standard and the B1 level texts.
22
+
23
+ ## Model Details
24
+
25
+ ### Model Description
26
+
27
+ <!-- Provide a longer summary of what this model is. -->
28
+
29
+
30
+
31
+ - **Developed by:** Freya Hewett, Hadi Asghari
32
+ - **Model type:** simplification model, text generation
33
+ - **Language(s) (NLP):** German
34
+ - **License:** Apache 2.0
35
+ - **Finetuned from model:** meta-llama/Meta-Llama-3-8B-Instruct
36
+
37
+ ### Model Sources
38
+
39
+ <!-- Provide the basic links for the model. -->
40
+
41
+ - **Repository:** [GermanElabSimplification](https://github.com/fhewett/GermanElabSimplification/tree/main)
42
+ - **Paper:** [Elaborative Simplification for German-Language Texts](https://aclanthology.org/2024.sigdial-1.3)
43
+
44
+ ## Uses
45
+
46
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
+
48
+ ### Direct Use
49
+
50
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
+
52
+ This model works best for simplifying German-language newspaper articles (news items, not commentaries or editorials). It may work for other types of texts.
53
+
54
+ ### Downstream Use
55
+
56
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
+ We have fine-tuned using only newspaper articles. We have not yet performed extensive out-of-domain testing, but believe that the model's capabilities could be improved by fine-tuning on more diverse data.
58
+
59
+ <!-- ### Out-of-Scope Use -->
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ As with most text generation models, the model sometimes produces information that is incorrect.
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Please check manually that your output text corresponds to the input text, as factual inconsistencies may have arisen.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ To load the model using transformers:
78
+
79
+ ```
80
+ from transformers import AutoTokenizer, AutoModelForCausalLM
81
+ import torch
82
+ device = "cuda"
83
+ tokenizer = AutoTokenizer.from_pretrained("frhew/sigdial_ft_b1")
84
+ model = AutoModelForCausalLM.from_pretrained("frhew/sigdial_ft_b1", torch_dtype=torch.float16).to(device)
85
+ ```
86
+
87
+ We used the following prompt at inference to test our model:
88
+
89
+ ```
90
+ <|begin_of_text|><|start_header_id|>system<|end_header_id|>
91
+ Du bist ein hilfreicher Assistent und hilfst dem User, Texte besser zu verstehen.<|eot_id|><|start_header_id|>user<|end_header_id|>
92
+ Kannst du bitte den folgenden Text zusammenfassen und sprachlich auf ein B1-Niveau in Deutsch vereinfachen? Schreibe maximal 5 Sätze.
93
+ {input_text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
94
+ ```
95
+
96
+ ## Training Details
97
+
98
+ ### Training Data
99
+
100
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
101
+
102
+ A sample of the data used to train our model can be found [here](https://github.com/fhewett/apa-rst/tree/main/original_texts).
103
+
104
+ #### Training Hyperparameters
105
+
106
+ <!--- **Training regime:** Our training script can be found [here](https://github.com/fhewett/simba/blob/main/models/train_simba.py). -->
107
+ <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
108
+
109
+ <!-- #### Speeds, Sizes, Times [optional] -->
110
+
111
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
112
+
113
+ ## Evaluation
114
+
115
+ The right hand side shows the results of the manual evaluation, done on the outputs from each model for 35 texts. M.P. stands for meaning preservation, S for simplification, C for coherence, F for factuality; the score represents the percentage of *yes* answers.
116
+ More details on the evaluation can be found in the paper. For all metrics, higher is better.
117
+
118
+ | **Model** | **Prompt** | **Test set** | **SARI** | **FRE** | **M.P.** | **S** | **C** | **F** | **Avg.** |
119
+ |--------------------|---------------------|-----------------------|------------------------------|-----------------------------|------------------------------|---------------------------|---------------------------|---------------------------|------------------------------|
120
+ | Baseline | Basic | A2 | 41.2 | 59.4 | .89 | .38 | .96 | .84 | .77 |
121
+ | FT-A2 | Basic | A2 | 44.0 | 70.6 | .49 | .82 | .56 | .64 | .63 |
122
+ | Baseline | Basic | B1 | 42.3 | 56.8 | .85 | .4 | .9 | .9 | .76 |
123
+ | FT-B1 | Basic | B1 | 42.4 | 60.0 | .75 | .55 | .6 | .75 | .66 |
124
+
125
+
126
+ #### Summary
127
+
128
+
129
+ ## Citation
130
+
131
+ **BibTeX:**
132
+
133
+ @inproceedings{hewett-etal-2024-elaborative,
134
+ title = "Elaborative Simplification for {G}erman-Language Texts",
135
+ author = "Hewett, Freya and
136
+ Asghari, Hadi and
137
+ Stede, Manfred",
138
+ editor = "Kawahara, Tatsuya and
139
+ Demberg, Vera and
140
+ Ultes, Stefan and
141
+ Inoue, Koji and
142
+ Mehri, Shikib and
143
+ Howcroft, David and
144
+ Komatani, Kazunori",
145
+ booktitle = "Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
146
+ month = sep,
147
+ year = "2024",
148
+ address = "Kyoto, Japan",
149
+ publisher = "Association for Computational Linguistics",
150
+ url = "https://aclanthology.org/2024.sigdial-1.3",
151
+ doi = "10.18653/v1/2024.sigdial-1.3",
152
+ pages = "29--39"}
153
+
154
+ **APA:**
155
+
156
+ Freya Hewett, Hadi Asghari, and Manfred Stede. 2024. Elaborative Simplification for German-Language Texts. In Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 29–39, Kyoto, Japan. Association for Computational Linguistics.
157
+
158
+ ## Model Card Contact
159
+
160
+ frhew