frgfm commited on
Commit
64b1f1e
·
1 Parent(s): 5bf6529

docs: Updated README

Browse files
Files changed (1) hide show
  1. README.md +115 -115
README.md CHANGED
@@ -1,115 +1,115 @@
1
- ---
2
- license: apache-2.0
3
- tags:
4
- - image-classification
5
- - pytorch
6
- - onnx
7
- datasets:
8
- - imagenette
9
- ---
10
-
11
-
12
- # ResNet-34 model
13
-
14
- Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf).
15
-
16
-
17
- ## Model description
18
-
19
- The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.
20
-
21
-
22
- ## Installation
23
-
24
- ### Prerequisites
25
-
26
- Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.
27
-
28
- ### Latest stable release
29
-
30
- You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:
31
-
32
- ```shell
33
- pip install pylocron
34
- ```
35
-
36
- or using [conda](https://anaconda.org/frgfm/pylocron):
37
-
38
- ```shell
39
- conda install -c frgfm pylocron
40
- ```
41
-
42
- ### Developer mode
43
-
44
- Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
45
-
46
- ```shell
47
- git clone https://github.com/frgfm/Holocron.git
48
- pip install -e Holocron/.
49
- ```
50
-
51
-
52
- ## Usage instructions
53
-
54
- ```python
55
- from PIL import Image
56
- from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
57
- from torchvision.transforms.functional import InterpolationMode
58
- from holocron.models import model_from_hf_hub
59
-
60
- model = model_from_hf_hub("frgfm/resnet34").eval()
61
-
62
- img = Image.open(path_to_an_image).convert("RGB")
63
-
64
- # Preprocessing
65
- config = model.default_cfg
66
- transform = Compose([
67
- Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
68
- PILToTensor(),
69
- ConvertImageDtype(torch.float32),
70
- Normalize(config['mean'], config['std'])
71
- ])
72
-
73
- input_tensor = transform(img).unsqueeze(0)
74
-
75
- # Inference
76
- with torch.inference_mode():
77
- output = model(input_tensor)
78
- probs = output.squeeze(0).softmax(dim=0)
79
- ```
80
-
81
-
82
- ## Citation
83
-
84
- Original paper
85
-
86
- ```bibtex
87
- @article{DBLP:journals/corr/HeZRS15,
88
- author = {Kaiming He and
89
- Xiangyu Zhang and
90
- Shaoqing Ren and
91
- Jian Sun},
92
- title = {Deep Residual Learning for Image Recognition},
93
- journal = {CoRR},
94
- volume = {abs/1512.03385},
95
- year = {2015},
96
- url = {http://arxiv.org/abs/1512.03385},
97
- eprinttype = {arXiv},
98
- eprint = {1512.03385},
99
- timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
100
- biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
101
- bibsource = {dblp computer science bibliography, https://dblp.org}
102
- }
103
- ```
104
-
105
- Source of this implementation
106
-
107
- ```bibtex
108
- @software{Fernandez_Holocron_2020,
109
- author = {Fernandez, François-Guillaume},
110
- month = {5},
111
- title = {{Holocron}},
112
- url = {https://github.com/frgfm/Holocron},
113
- year = {2020}
114
- }
115
- ```
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - pytorch
6
+ - onnx
7
+ datasets:
8
+ - frgfm/imagenette
9
+ ---
10
+
11
+
12
+ # ResNet-34 model
13
+
14
+ Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf).
15
+
16
+
17
+ ## Model description
18
+
19
+ The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.
20
+
21
+
22
+ ## Installation
23
+
24
+ ### Prerequisites
25
+
26
+ Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.
27
+
28
+ ### Latest stable release
29
+
30
+ You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:
31
+
32
+ ```shell
33
+ pip install pylocron
34
+ ```
35
+
36
+ or using [conda](https://anaconda.org/frgfm/pylocron):
37
+
38
+ ```shell
39
+ conda install -c frgfm pylocron
40
+ ```
41
+
42
+ ### Developer mode
43
+
44
+ Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
45
+
46
+ ```shell
47
+ git clone https://github.com/frgfm/Holocron.git
48
+ pip install -e Holocron/.
49
+ ```
50
+
51
+
52
+ ## Usage instructions
53
+
54
+ ```python
55
+ from PIL import Image
56
+ from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
57
+ from torchvision.transforms.functional import InterpolationMode
58
+ from holocron.models import model_from_hf_hub
59
+
60
+ model = model_from_hf_hub("frgfm/resnet34").eval()
61
+
62
+ img = Image.open(path_to_an_image).convert("RGB")
63
+
64
+ # Preprocessing
65
+ config = model.default_cfg
66
+ transform = Compose([
67
+ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
68
+ PILToTensor(),
69
+ ConvertImageDtype(torch.float32),
70
+ Normalize(config['mean'], config['std'])
71
+ ])
72
+
73
+ input_tensor = transform(img).unsqueeze(0)
74
+
75
+ # Inference
76
+ with torch.inference_mode():
77
+ output = model(input_tensor)
78
+ probs = output.squeeze(0).softmax(dim=0)
79
+ ```
80
+
81
+
82
+ ## Citation
83
+
84
+ Original paper
85
+
86
+ ```bibtex
87
+ @article{DBLP:journals/corr/HeZRS15,
88
+ author = {Kaiming He and
89
+ Xiangyu Zhang and
90
+ Shaoqing Ren and
91
+ Jian Sun},
92
+ title = {Deep Residual Learning for Image Recognition},
93
+ journal = {CoRR},
94
+ volume = {abs/1512.03385},
95
+ year = {2015},
96
+ url = {http://arxiv.org/abs/1512.03385},
97
+ eprinttype = {arXiv},
98
+ eprint = {1512.03385},
99
+ timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
100
+ biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
101
+ bibsource = {dblp computer science bibliography, https://dblp.org}
102
+ }
103
+ ```
104
+
105
+ Source of this implementation
106
+
107
+ ```bibtex
108
+ @software{Fernandez_Holocron_2020,
109
+ author = {Fernandez, François-Guillaume},
110
+ month = {5},
111
+ title = {{Holocron}},
112
+ url = {https://github.com/frgfm/Holocron},
113
+ year = {2020}
114
+ }
115
+ ```