Image Classification
Transformers
PyTorch
Inference Endpoints
fg-mindee commited on
Commit
7579229
·
1 Parent(s): 8f043c7

feat: Added PyTorch model

Browse files
Files changed (3) hide show
  1. README.md +110 -0
  2. config.json +1 -0
  3. pytorch_model.bin +3 -0
README.md CHANGED
@@ -1,3 +1,113 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - pytorch
6
+ - onnx
7
+ datasets:
8
+ - imagenette
9
  ---
10
+
11
+
12
+ # Darknet-19 model
13
+
14
+ Pretrained on [ImageNette](https://github.com/fastai/imagenette). The Darknet-19 architecture was introduced in [this paper](https://pjreddie.com/media/files/papers/YOLO9000.pdf).
15
+
16
+
17
+ ## Model description
18
+
19
+ The core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2.
20
+
21
+
22
+ ## Installation
23
+
24
+ ### Prerequisites
25
+
26
+ Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.
27
+
28
+ ### Latest stable release
29
+
30
+ You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:
31
+
32
+ ```shell
33
+ pip install pylocron
34
+ ```
35
+
36
+ or using [conda](https://anaconda.org/frgfm/pylocron):
37
+
38
+ ```shell
39
+ conda install -c frgfm pylocron
40
+ ```
41
+
42
+ ### Developer mode
43
+
44
+ Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
45
+
46
+ ```shell
47
+ git clone https://github.com/frgfm/Holocron.git
48
+ pip install -e Holocron/.
49
+ ```
50
+
51
+
52
+ ## Usage instructions
53
+
54
+ ```python
55
+ from PIL import Image
56
+ from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
57
+ from torchvision.transforms.functional import InterpolationMode
58
+ from holocron.models import model_from_hf_hub
59
+
60
+ model = model_from_hf_hub("frgfm/darknet19").eval()
61
+
62
+ img = Image.open(path_to_an_image).convert("RGB")
63
+
64
+ # Preprocessing
65
+ config = model.default_cfg
66
+ transform = Compose([
67
+ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
68
+ PILToTensor(),
69
+ ConvertImageDtype(torch.float32),
70
+ Normalize(config['mean'], config['std'])
71
+ ])
72
+
73
+ input_tensor = transform(img).unsqueeze(0)
74
+
75
+ # Inference
76
+ with torch.inference_mode():
77
+ output = model(input_tensor)
78
+ probs = output.squeeze(0).softmax(dim=0)
79
+ ```
80
+
81
+
82
+ ## Citation
83
+
84
+ Original paper
85
+
86
+ ```bibtex
87
+ @article{DBLP:journals/corr/RedmonF16,
88
+ author = {Joseph Redmon and
89
+ Ali Farhadi},
90
+ title = {{YOLO9000:} Better, Faster, Stronger},
91
+ journal = {CoRR},
92
+ volume = {abs/1612.08242},
93
+ year = {2016},
94
+ url = {http://arxiv.org/abs/1612.08242},
95
+ eprinttype = {arXiv},
96
+ eprint = {1612.08242},
97
+ timestamp = {Mon, 13 Aug 2018 16:48:25 +0200},
98
+ biburl = {https://dblp.org/rec/journals/corr/RedmonF16.bib},
99
+ bibsource = {dblp computer science bibliography, https://dblp.org}
100
+ }
101
+ ```
102
+
103
+ Source of this implementation
104
+
105
+ ```bibtex
106
+ @software{Fernandez_Holocron_2020,
107
+ author = {Fernandez, François-Guillaume},
108
+ month = {5},
109
+ title = {{Holocron}},
110
+ url = {https://github.com/frgfm/Holocron},
111
+ year = {2020}
112
+ }
113
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "arch": "darknet19", "interpolation": "bilinear", "input_shape": [3, 224, 224], "classes": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"]}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b02d469e0841608223cf8d027ca25006fca8406c58b9535d89f38084f537502b
3
+ size 79403557