frankmorales2020's picture
Update README.md
631c94b verified
|
raw
history blame
2.35 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.1
datasets:
  - generator
model-index:
  - name: Mistral-7B-v0.1_Emotion
    results: []

Mistral-7B-v0.1_Emotion

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the generator dataset.

Model description

Article: https://ai.plainenglish.io/fine-tuning-the-mistral-7b-instruct-v0-1-model-with-the-emotion-dataset-c84c50b553dc

Fine tunning: https://github.com/frank-morales2020/MLxDL/blob/main/FineTuning_Mistral_7b_hfdeployment_dataset_Emotion.ipynb

Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FineTunning_Testing_For_EmotionQADataset.ipynb

Intended uses & limitations

More information needed

Training and evaluation data

Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FineTunning_Testing_For_EmotionQADataset.ipynb

The following hyperparameters were used during training: learning_rate: 0.0002 train_batch_size: 3 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 6 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: constant lr_scheduler_warmup_ratio: 0.03

num_epochs: 1

Accuracy (Eval dataset and predict) for a sample of 2000: 59.45%

num_epochs: 25

Accuracy (Eval dataset and predict) for a sample of 2000: 79.95%

num_epochs: 40

Accuracy (Eval dataset and predict) for a sample of 2000: 80.70%

num_epochs: 100

Accuracy (Eval dataset and predict) for a sample of 2000: 80%

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 100

Training results

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1