frankmorales2020's picture
Update README.md
cef97d4 verified
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: Mistral-7B-text-to-sql
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-text-to-sql
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset.
https://huggingface.co/datasets/b-mc2/sql-create-context
b-mc2/sql-create-context
## USE CASE
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, pipeline
peft_model_id = "frankmorales2020/Mistral-7B-text-to-sql"
# Load Model with PEFT adapter
model = AutoPeftModelForCausalLM.from_pretrained(
peft_model_id,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
# Load into the pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
## DATASET
https://huggingface.co/datasets/b-mc2/sql-create-context
## ARTICLE
https://medium.com/@frankmorales_91352/text-to-sql-generation-a-comprehensive-overview-6feb24f69f3c
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
When evaluated on 1000 samples from the evaluation dataset, our model achieved an impressive accuracy of 76.30%. However, there's room for improvement. We could enhance the model's performance by exploring techniques like few-shot learning, RAG, and Self-healing to generate the SQL query.
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2