license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: Mistral-7B-text-to-sql
results: []
Mistral-7B-text-to-sql
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the generator dataset. https://huggingface.co/datasets/b-mc2/sql-create-context
b-mc2/sql-create-context
USE CASE
import torch from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, pipeline
peft_model_id = "frankmorales2020/Mistral-7B-text-to-sql"
Load Model with PEFT adapter
model = AutoPeftModelForCausalLM.from_pretrained( peft_model_id, device_map="auto", torch_dtype=torch.float16 )
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
Load into the pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
DATASET
https://huggingface.co/datasets/b-mc2/sql-create-context
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2