franklynnarvaez's picture
End of training
3706b51 verified
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner-cfv
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.807683615819209
          - name: Recall
            type: recall
            value: 0.8212316176470589
          - name: F1
            type: f1
            value: 0.8144012760624361
          - name: Accuracy
            type: accuracy
            value: 0.974075543714453

bert-finetuned-ner-cfv

This model is a fine-tuned version of bert-base-cased on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1851
  • Precision: 0.8077
  • Recall: 0.8212
  • F1: 0.8144
  • Accuracy: 0.9741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 17

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 347 0.1278 0.7284 0.7475 0.7378 0.9646
0.1176 2.0 694 0.1212 0.7509 0.7806 0.7654 0.9681
0.0453 3.0 1041 0.1156 0.8062 0.8116 0.8089 0.9730
0.0453 4.0 1388 0.1270 0.8081 0.8031 0.8056 0.9720
0.0233 5.0 1735 0.1298 0.8145 0.8231 0.8187 0.9746
0.0145 6.0 2082 0.1431 0.7950 0.8091 0.8020 0.9728
0.0145 7.0 2429 0.1501 0.8103 0.8166 0.8135 0.9734
0.009 8.0 2776 0.1553 0.8118 0.8157 0.8138 0.9738
0.0061 9.0 3123 0.1572 0.7891 0.8084 0.7986 0.9720
0.0061 10.0 3470 0.1589 0.8142 0.8196 0.8169 0.9739
0.005 11.0 3817 0.1671 0.8092 0.8148 0.8120 0.9733
0.0032 12.0 4164 0.1716 0.8066 0.8139 0.8102 0.9733
0.0031 13.0 4511 0.1767 0.8025 0.8169 0.8096 0.9731
0.0031 14.0 4858 0.1756 0.8096 0.8217 0.8156 0.9741
0.0023 15.0 5205 0.1845 0.8109 0.8157 0.8133 0.9739
0.0018 16.0 5552 0.1850 0.8090 0.8203 0.8146 0.9739
0.0018 17.0 5899 0.1851 0.8077 0.8212 0.8144 0.9741

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1