SMILE / tasks /trainer.py
fmthoker's picture
Upload 95 files
401fa20 verified
import datetime
import json
import logging
import os.path as osp
import time
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from dataset import MetaLoader, create_dataset, create_loader, create_sampler
from models.vindlu import VindLU
from tasks.retrieval_utils import evaluation_wrapper
from tasks.shared_utils import get_media_types, setup_model
from utils.basic_utils import (MetricLogger, SmoothedValue,
remove_files_if_exist, setup_seed)
from utils.config_utils import setup_main
from utils.distributed import get_rank, get_world_size, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
logger = logging.getLogger(__name__)
class PretrainTrainer(object):
"""trainer for pretraining."""
def __init__(self, config):
super(PretrainTrainer, self).__init__()
self.config = config
self.is_pretrain = config.mode == "pt"
self.setup()
self.has_decoder = False
if config.mode in ["ret", "pt"]:
self.evaluation_fn = evaluation_wrapper
self.model_cls = VindLU
elif config.mode == "vqa":
raise NotImplementedError("not implemented")
else:
raise NotImplementedError("not implemented")
self.build_dataloaders()
self.build_model()
def setup(self):
"""setup for train."""
config = self.config
if is_main_process() and config.wandb.enable:
self.wandb_run = setup_wandb(config)
else:
self.wandb_run = None
setup_seed(config.seed + get_rank())
self.device = torch.device(config.device)
@torch.no_grad()
def evaluate(self, epoch=0):
"""evaluate the model.
Args:
model (nn.Module): The model to evaluate.
loader (DataLoader): dataloader.
tokenizer (None): tokenizer.
prefix (str): The str prepended to the keys of return dict.
Returns: dict. The value is the corresponding evaluation results for the key.
"""
eval_res = {}
for test_name, test_loader in self.test_name2loaders.items():
if test_name not in self.config.test_types:
logger.info(
f"Skip eval {test_name} split. All test_types {self.config.test_types}"
)
continue
with torch.cuda.amp.autocast(enabled=self.config.fp16):
res = self.evaluation_fn(
self.model_without_ddp,
test_loader,
self.tokenizer,
self.device,
self.config,
test_name,
)
eval_res.update(res)
df = pd.DataFrame(eval_res)
logger.info(f"Epoch {epoch}")
logger.info(f"\n{df.transpose().to_string(max_cols=30)}")
return eval_res
def build_model(self):
"""TODO: Docstring for build_model.
Returns: TODO
"""
(
self.model,
self.model_without_ddp,
self.optimizer,
self.scheduler,
self.scaler,
self.tokenizer,
self.start_epoch,
self.global_step,
) = setup_model(
self.config,
model_cls=self.model_cls,
has_decoder=self.has_decoder,
pretrain=self.is_pretrain,
find_unused_parameters=True,
)
def build_dataloaders(self):
config = self.config
mode = config.mode
# train datasets, create a list of data loaders
logger.info(f"Creating dataset for {mode}")
train_datasets = create_dataset(f"{mode}_train", config)
media_types = get_media_types(train_datasets)
if config.distributed:
num_tasks = get_world_size()
global_rank = get_rank()
samplers = create_sampler(
train_datasets, [True] * len(media_types), num_tasks, global_rank
)
else:
samplers = [None] * len(media_types)
train_loaders = create_loader(
train_datasets,
samplers,
batch_size=[config.inputs.batch_size[k] for k in media_types],
num_workers=[config.num_workers] * len(media_types),
is_trains=[True] * len(media_types),
collate_fns=[None] * len(media_types),
) # [0]
# test datasets, a mapping from dataset name to data loader
test_datasets, test_dataset_names = create_dataset(f"{mode}_eval", config)
test_loaders = create_loader(
test_datasets,
[None] * len(test_datasets),
batch_size=[config.inputs.batch_size_test[d.media_type] for d in test_datasets],
num_workers=[config.num_workers] * len(test_datasets),
is_trains=[False] * len(test_datasets),
collate_fns=[None] * len(test_datasets),
)
test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
self.train_loaders = train_loaders
self.test_name2loaders = test_name2loaders
self.media_types = media_types
num_steps_per_epoch = sum(len(d) for d in self.train_loaders)
# update config
config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
config.scheduler.num_warmup_steps = (
num_steps_per_epoch * config.scheduler.warmup_epochs
)
self.config = config
def train(self):
"""train the model."""
config = self.config
# set cudnn.benchmark=True only when input size is fixed
# https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
cudnn.benchmark = len(self.media_types) == 1
if is_main_process() and config.wandb.enable:
wandb.watch(self.model)
best = 0
best_epoch = 0
logger.info("Start training")
start_time = time.time()
global_step = self.global_step
for epoch in range(self.start_epoch, config.scheduler.epochs):
# train one epoch
global_step = self.train_one_epoch(epoch, global_step)
# evaluation.
eval_res = self.evaluate(epoch)
if is_main_process():
# log to wandb
if config.wandb.enable:
for p, v in eval_res.items():
log_dict_to_wandb(v, step=global_step, prefix=p)
if config.stop_key is not None and config.stop_key in eval_res:
if config.model.multimodal.enable:
cur_r_mean = eval_res[config.stop_key]["r_mean"]
else:
cur_r_mean = eval_res[config.stop_key.replace("/", "_emb/")]["r_mean"]
else: # None
cur_r_mean = best + 1 # save the last as the best
with open(osp.join(config.output_dir, "eval_res_latest.json"), "w") as f:
json.dump(eval_res, f)
# eval_res.to_json(osp.join(config.output_dir, "eval_res_latest.json"))
save_obj = {
"model": self.model_without_ddp.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
"scaler": self.scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_obj, osp.join(config.output_dir, f"ckpt_{epoch:02d}.pth"))
if cur_r_mean > best:
torch.save(save_obj, osp.join(config.output_dir, "ckpt_best.pth"))
eval_file = "eval_res_best.json"
# eval_res.to_json(osp.join(config.output_dir, eval_file))
with open(osp.join(config.output_dir, eval_file), "w") as f:
json.dump(eval_res, f)
best = cur_r_mean
best_epoch = epoch
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Training time {total_time_str}")
logger.info(f"best epoch {best_epoch} [config.stop_key {config.stop_key}]")
logger.info(f"Checkpoints and Logs saved at {config.output_dir}")
if is_main_process() and config.wandb.enable:
self.wandb_run.finish()
def train_one_epoch(self, epoch, global_step):
config = self.config
self.model.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window=100, fmt="{value:.6f}"))
metric_logger.add_meter("temperature", SmoothedValue(window=100, fmt="{value:.4f}"))
loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
media_types = get_media_types(self.train_loaders)
for name in loss_names:
for m in media_types:
metric_logger.add_meter(
f"{m}-{name}", SmoothedValue(window=100, fmt="{value:.4f}")
)
header = f"Train Epoch: [{epoch}]"
log_freq = config.log_freq
if config.distributed:
for d in self.train_loaders:
d.sampler.set_epoch(epoch)
train_loader = MetaLoader(name2loader=dict(list(zip(media_types, self.train_loaders))))
model_without_ddp = self.model.module if config.distributed else self.model
iterator = metric_logger.log_every(train_loader, log_freq, header)
for i, (media_type, (image, text, idx)) in enumerate(iterator):
image = image.to(self.device, non_blocking=True)
idx = idx.to(self.device, non_blocking=True)
text_input = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=config.inputs.max_txt_l[media_type],
return_tensors="pt",
).to(self.device)
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
loss_dict = self.model(image, text_input, idx=idx)
loss = sum(loss_dict.values())
self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
if config.optimizer.max_grad_norm > 0:
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), config.optimizer.max_grad_norm
)
self.scaler.step(self.optimizer)
self.scaler.update()
self.scheduler.step()
# logging
for name in loss_names:
value = loss_dict[name]
value = value if isinstance(value, float) else value.item()
metric_logger.update(**{f"{media_type}-{name}": value})
metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
metric_logger.update(temperature=model_without_ddp.temp.item())
if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
logs = metric_logger.get_global_avg_dict()
log_dict_to_wandb(logs, step=global_step, prefix="train/")
global_step += 1
if config.debug and global_step % 2 == 0:
logger.info("debug mode, break training loop")
break
# gather the stats from all processes
metric_logger.synchronize_between_processes()
logger.info(f"Averaged stats: {metric_logger.global_avg()}")
return global_step
if __name__ == "__main__":
cfg = setup_main()
trainer = PretrainTrainer(cfg)
if cfg.evaluate:
trainer.evaluate()
else:
trainer.train()