fletch1300
commited on
Commit
•
be62e65
1
Parent(s):
9c3fdba
Update handler.py
Browse files- handler.py +7 -26
handler.py
CHANGED
@@ -4,7 +4,6 @@ import torch
|
|
4 |
import transformers
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
7 |
-
|
8 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
9 |
|
10 |
class EndpointHandler:
|
@@ -18,45 +17,27 @@ class EndpointHandler:
|
|
18 |
torch_dtype=dtype,
|
19 |
trust_remote_code=True,
|
20 |
)
|
21 |
-
|
22 |
generation_config = self.model.generation_config
|
23 |
generation_config.max_new_tokens = 200
|
24 |
-
generation_config.temperature = 0.
|
25 |
generation_config.top_p = 0.8
|
26 |
generation_config.num_return_sequences = 1
|
27 |
generation_config.pad_token_id = self.tokenizer.eos_token_id
|
28 |
generation_config.eos_token_id = self.tokenizer.eos_token_id
|
29 |
-
generation_config.early_stopping = True
|
30 |
self.generate_config = generation_config
|
31 |
|
32 |
self.pipeline = transformers.pipeline(
|
33 |
"text-generation", model=self.model, tokenizer=self.tokenizer
|
34 |
)
|
35 |
|
36 |
-
|
37 |
-
def _ensure_token_limit(self, text):
|
38 |
-
"""Ensure text is within the model's token limit."""
|
39 |
-
tokens = self.tokenizer.tokenize(text)
|
40 |
-
if len(tokens) > 2048:
|
41 |
-
# Remove tokens from the beginning until the text fits
|
42 |
-
tokens = tokens[-2048:]
|
43 |
-
return self.tokenizer.decode(tokens)
|
44 |
-
return text
|
45 |
-
|
46 |
-
|
47 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
48 |
user_prompt = data.pop("inputs", data)
|
49 |
|
50 |
-
#
|
51 |
-
permanent_context = "<context>: You are a life coaching bot
|
52 |
-
|
53 |
-
|
54 |
-
result = self.pipeline(structured_prompt, generation_config=self.generate_config)
|
55 |
|
56 |
-
|
57 |
-
response_text = self._extract_response(result[0]['generated_text'])
|
58 |
|
59 |
-
|
60 |
-
response_text = response_text.rsplit("[END", 1)[0].strip()
|
61 |
-
|
62 |
-
return {"response": response_text}
|
|
|
4 |
import transformers
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
|
|
7 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
8 |
|
9 |
class EndpointHandler:
|
|
|
17 |
torch_dtype=dtype,
|
18 |
trust_remote_code=True,
|
19 |
)
|
20 |
+
|
21 |
generation_config = self.model.generation_config
|
22 |
generation_config.max_new_tokens = 200
|
23 |
+
generation_config.temperature = 0.4
|
24 |
generation_config.top_p = 0.8
|
25 |
generation_config.num_return_sequences = 1
|
26 |
generation_config.pad_token_id = self.tokenizer.eos_token_id
|
27 |
generation_config.eos_token_id = self.tokenizer.eos_token_id
|
|
|
28 |
self.generate_config = generation_config
|
29 |
|
30 |
self.pipeline = transformers.pipeline(
|
31 |
"text-generation", model=self.model, tokenizer=self.tokenizer
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
35 |
user_prompt = data.pop("inputs", data)
|
36 |
|
37 |
+
# Add the permanent context to the user's prompt
|
38 |
+
permanent_context = "<context>: You are a life coaching bot with the goal of improving understanding, reducing suffering and improving life. Learn about the user in order to provide guidance without making assumptions or adding information not provided by the user."
|
39 |
+
combined_prompt = f"{permanent_context}\n<human>: {user_prompt}"
|
|
|
|
|
40 |
|
41 |
+
result = self.pipeline(combined_prompt, generation_config=self.generate_config)
|
|
|
42 |
|
43 |
+
return result
|
|
|
|
|
|