|
import torch |
|
import numpy as np |
|
import jax.numpy as jnp |
|
|
|
from transformers import AutoTokenizer |
|
from transformers import FlaxT5ForConditionalGeneration |
|
from transformers import TFT5ForConditionalGeneration |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("../") |
|
model_fx = FlaxT5ForConditionalGeneration.from_pretrained("../") |
|
model_tf = TFT5ForConditionalGeneration.from_pretrained("./", from_pt=True) |
|
model_tf.save_pretrained("./") |
|
|
|
text = "Hello To You" |
|
e_input_ids_fx = tokenizer(text, return_tensors="np", padding=True, max_length=128, truncation=True) |
|
d_input_ids_fx = jnp.ones((e_input_ids_fx.input_ids.shape[0], 1), dtype="i4") * model_fx.config.decoder_start_token_id |
|
|
|
e_input_ids_tf = tokenizer(text, return_tensors="tf", padding=True, max_length=128, truncation=True) |
|
d_input_ids_tf = np.ones((e_input_ids_tf.input_ids.shape[0], 1), dtype="i4") * model_tf.config.decoder_start_token_id |
|
|
|
|
|
print(e_input_ids_fx) |
|
print(d_input_ids_fx) |
|
|
|
print() |
|
|
|
encoder_tf = model_fx.encode(**e_input_ids_tf) |
|
decoder_tf = model_fx.decode(d_input_ids_tf, encoder_tf) |
|
logits_tf = decoder_tf.logits |
|
print(logits_tf) |
|
|
|
encoder_fx = model_fx.encode(**e_input_ids_fx) |
|
decoder_fx = model_fx.decode(d_input_ids_fx, encoder_fx) |
|
logits_fx = decoder_fx.logits |
|
print(logits_fx) |