t5-recipe-generation / src /flax_to_tf.py
m3hrdadfi's picture
Finalize model
1ec57a1
raw
history blame
1.25 kB
import torch
import numpy as np
import jax.numpy as jnp
from transformers import AutoTokenizer
from transformers import FlaxT5ForConditionalGeneration
from transformers import TFT5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("../")
model_fx = FlaxT5ForConditionalGeneration.from_pretrained("../")
model_tf = TFT5ForConditionalGeneration.from_pretrained("./", from_pt=True)
model_tf.save_pretrained("./")
text = "Hello To You"
e_input_ids_fx = tokenizer(text, return_tensors="np", padding=True, max_length=128, truncation=True)
d_input_ids_fx = jnp.ones((e_input_ids_fx.input_ids.shape[0], 1), dtype="i4") * model_fx.config.decoder_start_token_id
e_input_ids_tf = tokenizer(text, return_tensors="tf", padding=True, max_length=128, truncation=True)
d_input_ids_tf = np.ones((e_input_ids_tf.input_ids.shape[0], 1), dtype="i4") * model_tf.config.decoder_start_token_id
print(e_input_ids_fx)
print(d_input_ids_fx)
print()
encoder_tf = model_fx.encode(**e_input_ids_tf)
decoder_tf = model_fx.decode(d_input_ids_tf, encoder_tf)
logits_tf = decoder_tf.logits
print(logits_tf)
encoder_fx = model_fx.encode(**e_input_ids_fx)
decoder_fx = model_fx.decode(d_input_ids_fx, encoder_fx)
logits_fx = decoder_fx.logits
print(logits_fx)