|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Pre-training/Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. |
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: |
|
https://huggingface.co/models?filter=causal-lm |
|
""" |
|
|
|
|
|
from ast import Str |
|
import logging |
|
import math |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Callable, Optional |
|
import json |
|
import shutil |
|
from collections import defaultdict |
|
from flax import training |
|
import numpy as np |
|
import datasets |
|
from datasets import Dataset, load_dataset |
|
from tqdm import tqdm |
|
|
|
import jax |
|
import jax.profiler |
|
import jax.numpy as jnp |
|
import optax |
|
import transformers |
|
from flax import jax_utils, traverse_util |
|
from flax.jax_utils import unreplicate |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key |
|
from flax.training.checkpoints import save_checkpoint, restore_checkpoint |
|
from flax.serialization import to_bytes, from_bytes |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
AutoConfig, |
|
AutoTokenizer, |
|
FlaxAutoModelForCausalLM, |
|
HfArgumentParser, |
|
TrainingArguments, |
|
is_tensorboard_available, |
|
) |
|
from transformers.testing_utils import CaptureLogger |
|
|
|
from importlib.util import find_spec |
|
from utils import PrefetchDataloader, make_batch |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The model checkpoint for weights initialization." |
|
"Don't set if you want to train a model from scratch." |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." |
|
}, |
|
) |
|
save_optimizer: Optional[bool] = field( |
|
default=True, |
|
metadata={"help": "Whether to store full train state including optimizer."}, |
|
) |
|
repo_path_or_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the modelhub repo directory"}, |
|
) |
|
repo_url: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "URL of the modelhub repo"}, |
|
) |
|
decay_steps: int = field(default=None, metadata={"help":"Number of steps from peak to final learning rate"}) |
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
|
) |
|
data_dir: Optional[str] = field(default=None, metadata={"help": "Path to data directory."}) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
validation_split_percentage: Optional[int] = field( |
|
default=5, |
|
metadata={ |
|
"help": "The percentage of the train set used as validation set in case there's no validation split" |
|
}, |
|
) |
|
block_size: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Optional input sequence length after tokenization. " |
|
"The training dataset will be truncated in block of this size for training. " |
|
"Default to the model max input length for single sentence inputs (take into account special tokens)." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
text_column_name: Optional[str] = field( |
|
default='text', |
|
metadata={"help": "Column containing main text data."}, |
|
) |
|
shuffle_buffer_size: int = field( |
|
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."} |
|
) |
|
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."}) |
|
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"}) |
|
prefetch_buffer: int = field(default=8, metadata={"help": "The number of batches to prefetch for loading"}) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
|
|
def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray: |
|
num_samples = len(samples_idx) |
|
samples_to_remove = num_samples % batch_size |
|
|
|
if samples_to_remove != 0: |
|
samples_idx = samples_idx[:-samples_to_remove] |
|
sections_split = num_samples // batch_size |
|
batch_idx = np.split(samples_idx, sections_split) |
|
return batch_idx |
|
|
|
|
|
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length): |
|
""" |
|
The training iterator is advanced so that after groupifying the samples, |
|
`num_samples` of length `max_seq_length` are returned. |
|
""" |
|
num_total_tokens = max_seq_length * num_samples |
|
samples = defaultdict(list) |
|
|
|
i = 0 |
|
while i < num_total_tokens: |
|
tokenized_samples = next(train_iterator) |
|
i += len(tokenized_samples["input_ids"]) |
|
|
|
|
|
samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()} |
|
|
|
|
|
|
|
def group_texts(examples): |
|
result = { |
|
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)] |
|
for k, t in examples.items() |
|
} |
|
return result |
|
|
|
grouped_samples = group_texts(samples) |
|
return grouped_samples |
|
|
|
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): |
|
""" |
|
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. |
|
Shuffle batches if `shuffle` is `True`. |
|
""" |
|
steps_per_epoch = len(dataset) // batch_size |
|
|
|
if shuffle: |
|
batch_idx = jax.random.permutation(rng, len(dataset)) |
|
else: |
|
batch_idx = jnp.arange(len(dataset)) |
|
|
|
batch_idx = batch_idx[: steps_per_epoch * batch_size] |
|
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) |
|
|
|
for idx in batch_idx: |
|
batch = dataset[idx] |
|
batch = {k: jnp.array(v) for k, v in batch.items()} |
|
|
|
batch = shard(batch) |
|
|
|
yield batch |
|
|
|
|
|
def write_train_metric(summary_writer, train_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
|
|
def write_eval_metric(summary_writer, eval_metrics, step): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
|
|
def create_learning_rate_fn( |
|
num_train_steps: int, train_batch_size: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
def gpt3_schedule(warmup_steps, |
|
total_steps, |
|
peak_lr, |
|
end_lr): |
|
def sch(step): |
|
warmup_pct = jnp.clip(step, 0, warmup_steps) / warmup_steps |
|
anneal_pct = jnp.clip(step - warmup_steps, 0, total_steps) / total_steps |
|
|
|
return warmup_pct * peak_lr - (peak_lr - end_lr) * (1 - jnp.cos(jnp.pi * anneal_pct)) / 2 |
|
|
|
return sch |
|
|
|
|
|
def mb_item(x): |
|
return x.item() if hasattr(x, "item") else x |
|
|
|
|
|
def save_model_checkpoint(model, save_dir, state, with_opt=True, push_to_hub=False): |
|
""" |
|
If `push_to_hub` is True, will save to `save_dir`. Otherwise will save to `save_dir/ckpt-{step}`. |
|
""" |
|
state = jax_utils.unreplicate(state) |
|
logger.info(f"SAVING CHECKPOINT IN {save_dir}...") |
|
if not push_to_hub: |
|
save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}" |
|
model.save_pretrained( |
|
save_dir, |
|
params=state.params, |
|
push_to_hub=push_to_hub, |
|
commit_message=f"Saving weights and logs at step {mb_item(state.step)-1}", |
|
) |
|
if with_opt: |
|
with open(os.path.join(save_dir, "opt_state.msgpack"), "wb") as f: |
|
f.write(to_bytes(state.opt_state)) |
|
with open(os.path.join(save_dir, "training_state.json"), "w") as f: |
|
json.dump({"step": state.step.item()}, f) |
|
logger.info("checkpoint saved") |
|
|
|
def restore_model_checkpoint(save_dir, state): |
|
logger.info(f"RESTORING CHECKPOINT FROM {save_dir}...") |
|
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f: |
|
params = from_bytes(state.params, f.read()) |
|
|
|
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f: |
|
opt_state = from_bytes(state.opt_state, f.read()) |
|
|
|
with open(os.path.join(save_dir, "training_state.json"), "r") as f: |
|
training_state = json.load(f) |
|
step = training_state["step"] |
|
|
|
logger.info("checkpoint restored") |
|
return state.replace(step=step, params=params, opt_state=opt_state), step |
|
|
|
def rotate_checkpoints(ckpt_dir:str, save_total_limit:int): |
|
"Removes older checkpoints so that `save_total_limit` checkpoints are kept" |
|
|
|
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")] |
|
|
|
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split('-')[-1])) |
|
ckpts_to_delete = ckpts_sorted[:-save_total_limit] |
|
for ckpt in ckpts_to_delete: |
|
logger.info(f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})") |
|
shutil.rmtree(ckpt) |
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty." |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
train_dataset = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
streaming=True, |
|
split="train" |
|
) |
|
eval_dataset = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
streaming=True, |
|
split="validation" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_args.config_name: |
|
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) |
|
elif model_args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
|
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
elif model_args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
if model_args.model_name_or_path: |
|
model = FlaxAutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) |
|
) |
|
else: |
|
model = FlaxAutoModelForCausalLM.from_config( |
|
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) |
|
) |
|
|
|
|
|
|
|
|
|
text_column_name = data_args.text_column_name |
|
|
|
|
|
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") |
|
|
|
def tokenize_function(examples): |
|
with CaptureLogger(tok_logger) as cl: |
|
output = tokenizer(examples[text_column_name]) |
|
|
|
if "Token indices sequence length is longer than the" in cl.out: |
|
tok_logger.warning( |
|
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model." |
|
) |
|
return output |
|
|
|
tokenized_dataset = train_dataset.map( |
|
tokenize_function, |
|
batched=True, |
|
) |
|
tokenized_eval_dataset = eval_dataset.map( |
|
tokenize_function, |
|
batched=True, |
|
|
|
|
|
|
|
) |
|
|
|
if data_args.block_size is None: |
|
block_size = tokenizer.model_max_length |
|
if block_size > config.max_position_embeddings: |
|
logger.warning( |
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " |
|
"Picking 1024 instead. You can change that default value by passing --block_size xxx." |
|
) |
|
block_size = 1024 |
|
else: |
|
if data_args.block_size > tokenizer.model_max_length: |
|
logger.warning( |
|
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" |
|
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." |
|
) |
|
block_size = min(data_args.block_size, tokenizer.model_max_length) |
|
|
|
|
|
def group_texts(examples): |
|
|
|
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} |
|
total_length = len(concatenated_examples[list(examples.keys())[0]]) |
|
|
|
|
|
total_length = (total_length // block_size) * block_size |
|
|
|
result = { |
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] |
|
for k, t in concatenated_examples.items() |
|
} |
|
result["labels"] = result["input_ids"].copy() |
|
return result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shuffle_seed = training_args.seed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_loader = PrefetchDataloader( |
|
tokenized_dataset, |
|
training_args.max_steps * training_args.gradient_accumulation_steps, |
|
int(training_args.per_device_train_batch_size) * jax.device_count(), |
|
block_size, |
|
prefetch_buffer=data_args.prefetch_buffer, |
|
seed=shuffle_seed |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not installed: " |
|
"Please run pip install tensorboard to enable." |
|
) |
|
|
|
|
|
has_wandb = find_spec("wandb") is not None |
|
if jax.process_index() == 0 and has_wandb and ("wandb" in training_args.report_to): |
|
try: |
|
import wandb |
|
wandb.init( |
|
name=training_args.run_name, |
|
entity="wandb", |
|
project="hf-flax-gpt-neo-copilot", |
|
sync_tensorboard=True |
|
) |
|
wandb.config.update(training_args) |
|
wandb.config.update(model_args) |
|
wandb.config.update(data_args) |
|
except ImportError as e: |
|
print(e) |
|
has_wandb = False |
|
|
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() * training_args.gradient_accumulation_steps |
|
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() |
|
total_train_steps = training_args.max_steps * training_args.gradient_accumulation_steps |
|
|
|
|
|
gpt3_schedule_fn = gpt3_schedule( |
|
training_args.warmup_steps, |
|
model_args.decay_steps, |
|
training_args.learning_rate, |
|
training_args.learning_rate / 10. |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
flat_mask = { |
|
path: (path[-1] != "bias" and path[-2:] not in [("ln_1", "scale"), ("ln_2", "scale"), ("ln_f", "scale")]) |
|
for path in flat_params |
|
} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
|
|
if training_args.adafactor: |
|
|
|
|
|
optimizer = optax.adafactor( |
|
learning_rate=gpt3_schedule_fn, |
|
) |
|
else: |
|
optimizer = optax.adamw( |
|
learning_rate=gpt3_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
mask=decay_mask_fn, |
|
) |
|
if training_args.gradient_accumulation_steps > 1: |
|
optimizer = optax.MultiSteps(optimizer, training_args.gradient_accumulation_steps) |
|
grad_accum_steps = training_args.gradient_accumulation_steps |
|
|
|
|
|
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng) |
|
|
|
if training_args.resume_from_checkpoint: |
|
state = restore_checkpoint(training_args.resume_from_checkpoint, state) |
|
resume_step = mb_item(state.step) |
|
else: |
|
resume_step = 0 |
|
|
|
def loss_fn(logits, labels): |
|
shift_logits = logits[..., :-1, :] |
|
shift_labels = labels[..., 1:] |
|
loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1])) |
|
return loss.mean() |
|
|
|
|
|
def train_step(state, batch): |
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
def compute_loss(params): |
|
labels = batch.pop("labels") |
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
loss = loss_fn(logits, labels) |
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
loss, grad = grad_fn(state.params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
|
|
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) |
|
|
|
metrics = {"loss": loss, "learning_rate": gpt3_schedule_fn(state.step // grad_accum_steps)} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
return new_state, metrics |
|
|
|
|
|
def eval_step(params, batch): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, train=False)[0] |
|
loss = loss_fn(logits, labels) |
|
|
|
|
|
metrics = {"loss": loss} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
return metrics |
|
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) |
|
p_eval_step = jax.pmap(eval_step, "batch") |
|
|
|
|
|
state = state.replicate() |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed and grad_accum) = {train_batch_size}") |
|
logger.info(f" Total optimization steps = {training_args.max_steps}") |
|
|
|
if not training_args.skip_memory_metrics: |
|
server = jax.profiler.start_server(9999) |
|
|
|
train_time = 0 |
|
train_metrics = [] |
|
|
|
steps = tqdm(range(training_args.max_steps), position=0, initial=resume_step) |
|
for step in range(total_train_steps): |
|
|
|
train_start = time.time() |
|
rng, input_rng = jax.random.split(rng) |
|
|
|
cur_step = step |
|
|
|
if cur_step < resume_step: |
|
continue |
|
|
|
|
|
|
|
|
|
batch = shard(next(train_loader)) |
|
|
|
state, train_metric = p_train_step(state, batch) |
|
train_metrics.append(train_metric) |
|
if step % grad_accum_steps == 0: |
|
steps.update(1) |
|
|
|
if cur_step % (training_args.logging_steps * grad_accum_steps)== 0 and cur_step > 0: |
|
|
|
train_metric = unreplicate(train_metric) |
|
train_time += time.time() - train_start |
|
if has_tensorboard and jax.process_index() == 0: |
|
write_train_metric(summary_writer, train_metrics, train_time, cur_step) |
|
if has_wandb and jax.process_index() == 0 and ("wandb" in training_args.report_to): |
|
|
|
_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()} |
|
wandb.log({"training_step":cur_step, **_metrics}, commit=True) |
|
|
|
steps.write( |
|
f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})" |
|
) |
|
|
|
train_metrics = [] |
|
|
|
if cur_step % (training_args.eval_steps * grad_accum_steps) == 0 and cur_step > 0 and training_args.do_eval: |
|
|
|
eval_metrics = [] |
|
eval_steps = data_args.max_eval_samples |
|
|
|
eval_loader = PrefetchDataloader( |
|
tokenized_eval_dataset, |
|
eval_steps, |
|
eval_batch_size, |
|
block_size, |
|
prefetch_buffer=data_args.prefetch_buffer, |
|
shuffle=False, |
|
) |
|
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): |
|
|
|
batch = shard(next(eval_loader)) |
|
metrics = p_eval_step(state.params, batch) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) |
|
|
|
try: |
|
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) |
|
except OverflowError: |
|
eval_metrics["perplexity"] = float("inf") |
|
|
|
eval_loader.terminate() |
|
|
|
desc = f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})" |
|
steps.write(desc) |
|
steps.desc = desc |
|
|
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
|
|
write_eval_metric(summary_writer, eval_metrics, cur_step) |
|
if has_wandb and jax.process_index() == 0 and ("wandb" in training_args.report_to): |
|
_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()} |
|
wandb.log({"eval_step":cur_step, **_metrics}) |
|
|
|
if cur_step % (training_args.save_steps * grad_accum_steps) == 0 and cur_step > 0: |
|
|
|
if jax.process_index() == 0: |
|
print("*********", training_args.push_to_hub) |
|
save_model_checkpoint(model, training_args.output_dir, state, with_opt=False, |
|
push_to_hub=training_args.push_to_hub) |
|
if model_args.save_optimizer: |
|
|
|
save_checkpoint(training_args.output_dir, jax_utils.unreplicate(state), cur_step, keep=training_args.save_total_limit, overwrite=False) |
|
if training_args.save_total_limit is not None: |
|
rotate_checkpoints(training_args.output_dir, training_args.save_total_limit) |
|
|
|
train_loader.terminate() |
|
|
|
save_model_checkpoint(model, training_args.output_dir, state, with_opt=False, |
|
push_to_hub=training_args.push_to_hub) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |