Abinaya Mahendiran
commited on
Commit
·
3d74ff6
1
Parent(s):
2cc2a38
Updated baseline
Browse files- .gitattributes +3 -2
- gpt-2-tamil/config.json +36 -0
- gpt-2-tamil/events.out.tfevents.1626064970.t1v-n-ebe36c53-w-0.400773.3.v2 +3 -0
- gpt-2-tamil/events.out.tfevents.1626108088.t1v-n-ebe36c53-w-0.483452.3.v2 +3 -0
- gpt-2-tamil/events.out.tfevents.1626108395.t1v-n-ebe36c53-w-0.486342.3.v2 +3 -0
- gpt-2-tamil/flax_model.msgpack +3 -0
- gpt-2-tamil/tokenizer.json +0 -0
- scripts/run.log +0 -0
- scripts/train_gpt2-oscar-tamil.sh +11 -3
- scripts/wandb/debug-internal.log +1 -0
- scripts/wandb/debug.log +1 -0
- scripts/wandb/latest-run +1 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/files/config.yaml +301 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/files/events.out.tfevents.1626064970.t1v-n-ebe36c53-w-0.400773.3.v2 +1 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/files/output.log +3 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/files/requirements.txt +123 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/files/wandb-metadata.json +45 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/files/wandb-summary.json +1 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/logs/debug-internal.log +3 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/logs/debug.log +3 -0
- scripts/wandb/run-20210712_044248-12kjsz9i/run-12kjsz9i.wandb +3 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/files/config.yaml +305 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/files/events.out.tfevents.1626108088.t1v-n-ebe36c53-w-0.483452.3.v2 +1 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/files/output.log +3 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/files/requirements.txt +123 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/files/wandb-metadata.json +49 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/files/wandb-summary.json +1 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/logs/debug-internal.log +3 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/logs/debug.log +3 -0
- scripts/wandb/run-20210712_164126-1cgtoi5r/run-1cgtoi5r.wandb +3 -0
- scripts/wandb/run-20210712_164633-1ddv4131/files/config.yaml +305 -0
- scripts/wandb/run-20210712_164633-1ddv4131/files/events.out.tfevents.1626108395.t1v-n-ebe36c53-w-0.486342.3.v2 +1 -0
- scripts/wandb/run-20210712_164633-1ddv4131/files/output.log +3 -0
- scripts/wandb/run-20210712_164633-1ddv4131/files/requirements.txt +123 -0
- scripts/wandb/run-20210712_164633-1ddv4131/files/wandb-metadata.json +49 -0
- scripts/wandb/run-20210712_164633-1ddv4131/files/wandb-summary.json +1 -0
- scripts/wandb/run-20210712_164633-1ddv4131/logs/debug-internal.log +3 -0
- scripts/wandb/run-20210712_164633-1ddv4131/logs/debug.log +3 -0
- scripts/wandb/run-20210712_164633-1ddv4131/run-1ddv4131.wandb +3 -0
- src/create_config.py +1 -1
- src/run_clm_flax.py +147 -232
- src/train_tokenizer.py +1 -1
.gitattributes
CHANGED
@@ -12,6 +12,7 @@
|
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.
|
|
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.log filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.wandb filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
gpt-2-tamil/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2LMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.0,
|
7 |
+
"bos_token_id": 50256,
|
8 |
+
"embd_pdrop": 0.0,
|
9 |
+
"eos_token_id": 50256,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"layer_norm_epsilon": 1e-05,
|
13 |
+
"model_type": "gpt2",
|
14 |
+
"n_ctx": 1024,
|
15 |
+
"n_embd": 768,
|
16 |
+
"n_head": 12,
|
17 |
+
"n_inner": null,
|
18 |
+
"n_layer": 12,
|
19 |
+
"n_positions": 1024,
|
20 |
+
"resid_pdrop": 0.0,
|
21 |
+
"scale_attn_weights": true,
|
22 |
+
"summary_activation": null,
|
23 |
+
"summary_first_dropout": 0.1,
|
24 |
+
"summary_proj_to_labels": true,
|
25 |
+
"summary_type": "cls_index",
|
26 |
+
"summary_use_proj": true,
|
27 |
+
"task_specific_params": {
|
28 |
+
"text-generation": {
|
29 |
+
"do_sample": true,
|
30 |
+
"max_length": 50
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"transformers_version": "4.9.0.dev0",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 50257
|
36 |
+
}
|
gpt-2-tamil/events.out.tfevents.1626064970.t1v-n-ebe36c53-w-0.400773.3.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cc79262fd103f58e2c2bb461dc3db699613de0d444116b20f5644759ebfbe6e
|
3 |
+
size 40
|
gpt-2-tamil/events.out.tfevents.1626108088.t1v-n-ebe36c53-w-0.483452.3.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d27b640fe5e66ecd1bf4a3667a35e4243bc4afc19dd7a2247a6e3d0a56211f6
|
3 |
+
size 40
|
gpt-2-tamil/events.out.tfevents.1626108395.t1v-n-ebe36c53-w-0.486342.3.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f98c1e1d0d88519bc875d97549b8ceb6d03f7c5d0aca79c15a10749f91c28362
|
3 |
+
size 19735799
|
gpt-2-tamil/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f15aa88a1b0381444c39e9e70f17a82751f7c317d7be7e22cc9707527f9a8c27
|
3 |
+
size 497764120
|
gpt-2-tamil/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scripts/run.log
ADDED
File without changes
|
scripts/train_gpt2-oscar-tamil.sh
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
#!/usr/bin/env bash
|
2 |
-
|
3 |
--output_dir="${MODEL_DIR}" \
|
4 |
--model_type="gpt2" \
|
5 |
--config_name="${MODEL_DIR}" \
|
@@ -10,8 +10,16 @@
|
|
10 |
--block_size="512" \
|
11 |
--per_device_train_batch_size="64" \
|
12 |
--per_device_eval_batch_size="64" \
|
13 |
-
--learning_rate="
|
|
|
14 |
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
|
15 |
--overwrite_output_dir \
|
16 |
-
--num_train_epochs="
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
#--push_to_hub
|
|
|
|
1 |
#!/usr/bin/env bash
|
2 |
+
python ../src/run_clm_flax.py \
|
3 |
--output_dir="${MODEL_DIR}" \
|
4 |
--model_type="gpt2" \
|
5 |
--config_name="${MODEL_DIR}" \
|
|
|
10 |
--block_size="512" \
|
11 |
--per_device_train_batch_size="64" \
|
12 |
--per_device_eval_batch_size="64" \
|
13 |
+
--learning_rate="3e-5" \
|
14 |
+
--warmup_steps="1000" \
|
15 |
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
|
16 |
--overwrite_output_dir \
|
17 |
+
--num_train_epochs="25" \
|
18 |
+
--report_to wandb \
|
19 |
+
--run_name trial \
|
20 |
+
--logging_steps="500" \
|
21 |
+
--save_steps="2500" \
|
22 |
+
--eval_steps="2500" \
|
23 |
+
--preprocessing_num_workers="90" \
|
24 |
#--push_to_hub
|
25 |
+
2>&1 | tee run.log
|
scripts/wandb/debug-internal.log
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20210712_164633-1ddv4131/logs/debug-internal.log
|
scripts/wandb/debug.log
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20210712_164633-1ddv4131/logs/debug.log
|
scripts/wandb/latest-run
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20210712_164633-1ddv4131
|
scripts/wandb/run-20210712_044248-12kjsz9i/files/config.yaml
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
__cached__setup_devices:
|
4 |
+
desc: null
|
5 |
+
value: cpu
|
6 |
+
_n_gpu:
|
7 |
+
desc: null
|
8 |
+
value: 0
|
9 |
+
_wandb:
|
10 |
+
desc: null
|
11 |
+
value:
|
12 |
+
cli_version: 0.10.33
|
13 |
+
framework: huggingface
|
14 |
+
huggingface_version: 4.9.0.dev0
|
15 |
+
is_jupyter_run: false
|
16 |
+
is_kaggle_kernel: false
|
17 |
+
python_version: 3.8.10
|
18 |
+
t:
|
19 |
+
1:
|
20 |
+
- 1
|
21 |
+
- 3
|
22 |
+
- 11
|
23 |
+
4: 3.8.10
|
24 |
+
5: 0.10.33
|
25 |
+
6: 4.9.0.dev0
|
26 |
+
8:
|
27 |
+
- 5
|
28 |
+
adafactor:
|
29 |
+
desc: null
|
30 |
+
value: false
|
31 |
+
adam_beta1:
|
32 |
+
desc: null
|
33 |
+
value: 0.9
|
34 |
+
adam_beta2:
|
35 |
+
desc: null
|
36 |
+
value: 0.98
|
37 |
+
adam_epsilon:
|
38 |
+
desc: null
|
39 |
+
value: 1.0e-08
|
40 |
+
block_size:
|
41 |
+
desc: null
|
42 |
+
value: 512
|
43 |
+
cache_dir:
|
44 |
+
desc: null
|
45 |
+
value: null
|
46 |
+
config_name:
|
47 |
+
desc: null
|
48 |
+
value: ../gpt-2-tamil/
|
49 |
+
dataloader_drop_last:
|
50 |
+
desc: null
|
51 |
+
value: false
|
52 |
+
dataloader_num_workers:
|
53 |
+
desc: null
|
54 |
+
value: 0
|
55 |
+
dataloader_pin_memory:
|
56 |
+
desc: null
|
57 |
+
value: true
|
58 |
+
dataset_config_name:
|
59 |
+
desc: null
|
60 |
+
value: unshuffled_deduplicated_ta
|
61 |
+
dataset_name:
|
62 |
+
desc: null
|
63 |
+
value: oscar
|
64 |
+
ddp_find_unused_parameters:
|
65 |
+
desc: null
|
66 |
+
value: null
|
67 |
+
debug:
|
68 |
+
desc: null
|
69 |
+
value: []
|
70 |
+
deepspeed:
|
71 |
+
desc: null
|
72 |
+
value: null
|
73 |
+
disable_tqdm:
|
74 |
+
desc: null
|
75 |
+
value: false
|
76 |
+
do_eval:
|
77 |
+
desc: null
|
78 |
+
value: true
|
79 |
+
do_predict:
|
80 |
+
desc: null
|
81 |
+
value: false
|
82 |
+
do_train:
|
83 |
+
desc: null
|
84 |
+
value: true
|
85 |
+
dtype:
|
86 |
+
desc: null
|
87 |
+
value: float32
|
88 |
+
eval_accumulation_steps:
|
89 |
+
desc: null
|
90 |
+
value: null
|
91 |
+
eval_steps:
|
92 |
+
desc: null
|
93 |
+
value: 500
|
94 |
+
evaluation_strategy:
|
95 |
+
desc: null
|
96 |
+
value: IntervalStrategy.NO
|
97 |
+
fp16:
|
98 |
+
desc: null
|
99 |
+
value: false
|
100 |
+
fp16_backend:
|
101 |
+
desc: null
|
102 |
+
value: auto
|
103 |
+
fp16_full_eval:
|
104 |
+
desc: null
|
105 |
+
value: false
|
106 |
+
fp16_opt_level:
|
107 |
+
desc: null
|
108 |
+
value: O1
|
109 |
+
gradient_accumulation_steps:
|
110 |
+
desc: null
|
111 |
+
value: 1
|
112 |
+
greater_is_better:
|
113 |
+
desc: null
|
114 |
+
value: null
|
115 |
+
group_by_length:
|
116 |
+
desc: null
|
117 |
+
value: false
|
118 |
+
ignore_data_skip:
|
119 |
+
desc: null
|
120 |
+
value: false
|
121 |
+
label_names:
|
122 |
+
desc: null
|
123 |
+
value: null
|
124 |
+
label_smoothing_factor:
|
125 |
+
desc: null
|
126 |
+
value: 0.0
|
127 |
+
learning_rate:
|
128 |
+
desc: null
|
129 |
+
value: 3.0e-05
|
130 |
+
length_column_name:
|
131 |
+
desc: null
|
132 |
+
value: length
|
133 |
+
load_best_model_at_end:
|
134 |
+
desc: null
|
135 |
+
value: false
|
136 |
+
local_rank:
|
137 |
+
desc: null
|
138 |
+
value: -1
|
139 |
+
log_level:
|
140 |
+
desc: null
|
141 |
+
value: -1
|
142 |
+
log_level_replica:
|
143 |
+
desc: null
|
144 |
+
value: -1
|
145 |
+
log_on_each_node:
|
146 |
+
desc: null
|
147 |
+
value: true
|
148 |
+
logging_dir:
|
149 |
+
desc: null
|
150 |
+
value: ../tmp/../gpt-2-tamil/runs/Jul11_17-18-14_t1v-n-ebe36c53-w-0
|
151 |
+
logging_first_step:
|
152 |
+
desc: null
|
153 |
+
value: false
|
154 |
+
logging_steps:
|
155 |
+
desc: null
|
156 |
+
value: 500
|
157 |
+
logging_strategy:
|
158 |
+
desc: null
|
159 |
+
value: IntervalStrategy.STEPS
|
160 |
+
lr_scheduler_type:
|
161 |
+
desc: null
|
162 |
+
value: SchedulerType.LINEAR
|
163 |
+
max_eval_samples:
|
164 |
+
desc: null
|
165 |
+
value: null
|
166 |
+
max_grad_norm:
|
167 |
+
desc: null
|
168 |
+
value: 1.0
|
169 |
+
max_steps:
|
170 |
+
desc: null
|
171 |
+
value: -1
|
172 |
+
max_train_samples:
|
173 |
+
desc: null
|
174 |
+
value: null
|
175 |
+
metric_for_best_model:
|
176 |
+
desc: null
|
177 |
+
value: null
|
178 |
+
model_name_or_path:
|
179 |
+
desc: null
|
180 |
+
value: null
|
181 |
+
model_type:
|
182 |
+
desc: null
|
183 |
+
value: gpt2
|
184 |
+
mp_parameters:
|
185 |
+
desc: null
|
186 |
+
value: ''
|
187 |
+
no_cuda:
|
188 |
+
desc: null
|
189 |
+
value: false
|
190 |
+
num_train_epochs:
|
191 |
+
desc: null
|
192 |
+
value: 1.0
|
193 |
+
output_dir:
|
194 |
+
desc: null
|
195 |
+
value: ../tmp/../gpt-2-tamil/
|
196 |
+
overwrite_cache:
|
197 |
+
desc: null
|
198 |
+
value: false
|
199 |
+
overwrite_output_dir:
|
200 |
+
desc: null
|
201 |
+
value: true
|
202 |
+
past_index:
|
203 |
+
desc: null
|
204 |
+
value: -1
|
205 |
+
per_device_eval_batch_size:
|
206 |
+
desc: null
|
207 |
+
value: 64
|
208 |
+
per_device_train_batch_size:
|
209 |
+
desc: null
|
210 |
+
value: 64
|
211 |
+
per_gpu_eval_batch_size:
|
212 |
+
desc: null
|
213 |
+
value: null
|
214 |
+
per_gpu_train_batch_size:
|
215 |
+
desc: null
|
216 |
+
value: null
|
217 |
+
prediction_loss_only:
|
218 |
+
desc: null
|
219 |
+
value: false
|
220 |
+
preprocessing_num_workers:
|
221 |
+
desc: null
|
222 |
+
value: null
|
223 |
+
push_to_hub:
|
224 |
+
desc: null
|
225 |
+
value: false
|
226 |
+
push_to_hub_model_id:
|
227 |
+
desc: null
|
228 |
+
value: gpt-2-tamil
|
229 |
+
push_to_hub_organization:
|
230 |
+
desc: null
|
231 |
+
value: null
|
232 |
+
push_to_hub_token:
|
233 |
+
desc: null
|
234 |
+
value: null
|
235 |
+
remove_unused_columns:
|
236 |
+
desc: null
|
237 |
+
value: true
|
238 |
+
report_to:
|
239 |
+
desc: null
|
240 |
+
value:
|
241 |
+
- wandb
|
242 |
+
resume_from_checkpoint:
|
243 |
+
desc: null
|
244 |
+
value: null
|
245 |
+
run_name:
|
246 |
+
desc: null
|
247 |
+
value: trial
|
248 |
+
save_on_each_node:
|
249 |
+
desc: null
|
250 |
+
value: false
|
251 |
+
save_steps:
|
252 |
+
desc: null
|
253 |
+
value: 500
|
254 |
+
save_strategy:
|
255 |
+
desc: null
|
256 |
+
value: IntervalStrategy.STEPS
|
257 |
+
save_total_limit:
|
258 |
+
desc: null
|
259 |
+
value: null
|
260 |
+
seed:
|
261 |
+
desc: null
|
262 |
+
value: 42
|
263 |
+
sharded_ddp:
|
264 |
+
desc: null
|
265 |
+
value: []
|
266 |
+
skip_memory_metrics:
|
267 |
+
desc: null
|
268 |
+
value: true
|
269 |
+
tokenizer_name:
|
270 |
+
desc: null
|
271 |
+
value: ../gpt-2-tamil/
|
272 |
+
tpu_metrics_debug:
|
273 |
+
desc: null
|
274 |
+
value: false
|
275 |
+
tpu_num_cores:
|
276 |
+
desc: null
|
277 |
+
value: null
|
278 |
+
train_file:
|
279 |
+
desc: null
|
280 |
+
value: null
|
281 |
+
use_fast_tokenizer:
|
282 |
+
desc: null
|
283 |
+
value: true
|
284 |
+
use_legacy_prediction_loop:
|
285 |
+
desc: null
|
286 |
+
value: false
|
287 |
+
validation_file:
|
288 |
+
desc: null
|
289 |
+
value: null
|
290 |
+
validation_split_percentage:
|
291 |
+
desc: null
|
292 |
+
value: 5
|
293 |
+
warmup_ratio:
|
294 |
+
desc: null
|
295 |
+
value: 0.0
|
296 |
+
warmup_steps:
|
297 |
+
desc: null
|
298 |
+
value: 1000
|
299 |
+
weight_decay:
|
300 |
+
desc: null
|
301 |
+
value: 0.01
|
scripts/wandb/run-20210712_044248-12kjsz9i/files/events.out.tfevents.1626064970.t1v-n-ebe36c53-w-0.400773.3.v2
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/tweety_abi/GPT2-Tamil/gpt-2-tamil/events.out.tfevents.1626064970.t1v-n-ebe36c53-w-0.400773.3.v2
|
scripts/wandb/run-20210712_044248-12kjsz9i/files/output.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83c77cb8fdf96d6479ff9c389029839beb48a924dec227d80f708b2d1f1dd66f
|
3 |
+
size 107953
|
scripts/wandb/run-20210712_044248-12kjsz9i/files/requirements.txt
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==0.13.0
|
2 |
+
aiohttp==3.7.4.post0
|
3 |
+
appdirs==1.4.4
|
4 |
+
astunparse==1.6.3
|
5 |
+
async-timeout==3.0.1
|
6 |
+
attrs==21.2.0
|
7 |
+
backcall==0.2.0
|
8 |
+
black==21.6b0
|
9 |
+
cachetools==4.2.2
|
10 |
+
certifi==2021.5.30
|
11 |
+
cfgv==3.3.0
|
12 |
+
chardet==4.0.0
|
13 |
+
chex==0.0.7
|
14 |
+
click==8.0.1
|
15 |
+
configparser==5.0.2
|
16 |
+
cycler==0.10.0
|
17 |
+
datasets==1.8.1.dev0
|
18 |
+
decorator==5.0.9
|
19 |
+
dill==0.3.4
|
20 |
+
distlib==0.3.2
|
21 |
+
dm-tree==0.1.6
|
22 |
+
docker-pycreds==0.4.0
|
23 |
+
filelock==3.0.12
|
24 |
+
flake8==3.9.2
|
25 |
+
flatbuffers==1.12
|
26 |
+
flax==0.3.4
|
27 |
+
fsspec==2021.6.1
|
28 |
+
gast==0.4.0
|
29 |
+
gitdb==4.0.7
|
30 |
+
gitpython==3.1.18
|
31 |
+
google-auth-oauthlib==0.4.4
|
32 |
+
google-auth==1.32.1
|
33 |
+
google-pasta==0.2.0
|
34 |
+
grpcio==1.34.1
|
35 |
+
h5py==3.1.0
|
36 |
+
huggingface-hub==0.0.12
|
37 |
+
identify==2.2.10
|
38 |
+
idna==2.10
|
39 |
+
ipython-genutils==0.2.0
|
40 |
+
ipython==7.25.0
|
41 |
+
isort==5.9.1
|
42 |
+
jax==0.2.16
|
43 |
+
jaxlib==0.1.68
|
44 |
+
jedi==0.18.0
|
45 |
+
joblib==1.0.1
|
46 |
+
keras-nightly==2.5.0.dev2021032900
|
47 |
+
keras-preprocessing==1.1.2
|
48 |
+
kiwisolver==1.3.1
|
49 |
+
libtpu-nightly==0.1.dev20210615
|
50 |
+
markdown==3.3.4
|
51 |
+
matplotlib-inline==0.1.2
|
52 |
+
matplotlib==3.4.2
|
53 |
+
mccabe==0.6.1
|
54 |
+
msgpack==1.0.2
|
55 |
+
multidict==5.1.0
|
56 |
+
multiprocess==0.70.12.2
|
57 |
+
mypy-extensions==0.4.3
|
58 |
+
nodeenv==1.6.0
|
59 |
+
numpy==1.19.5
|
60 |
+
oauthlib==3.1.1
|
61 |
+
opt-einsum==3.3.0
|
62 |
+
optax==0.0.8
|
63 |
+
packaging==20.9
|
64 |
+
pandas==1.2.5
|
65 |
+
parso==0.8.2
|
66 |
+
pathspec==0.8.1
|
67 |
+
pathtools==0.1.2
|
68 |
+
pexpect==4.8.0
|
69 |
+
pickleshare==0.7.5
|
70 |
+
pillow==8.3.0
|
71 |
+
pip==20.0.2
|
72 |
+
pkg-resources==0.0.0
|
73 |
+
pre-commit==2.13.0
|
74 |
+
promise==2.3
|
75 |
+
prompt-toolkit==3.0.19
|
76 |
+
protobuf==3.17.3
|
77 |
+
psutil==5.8.0
|
78 |
+
ptyprocess==0.7.0
|
79 |
+
pyarrow==4.0.1
|
80 |
+
pyasn1-modules==0.2.8
|
81 |
+
pyasn1==0.4.8
|
82 |
+
pycodestyle==2.7.0
|
83 |
+
pyflakes==2.3.1
|
84 |
+
pygments==2.9.0
|
85 |
+
pyparsing==2.4.7
|
86 |
+
python-dateutil==2.8.1
|
87 |
+
pytz==2021.1
|
88 |
+
pyyaml==5.4.1
|
89 |
+
regex==2021.7.1
|
90 |
+
requests-oauthlib==1.3.0
|
91 |
+
requests==2.25.1
|
92 |
+
rsa==4.7.2
|
93 |
+
sacremoses==0.0.45
|
94 |
+
scipy==1.7.0
|
95 |
+
sentry-sdk==1.3.0
|
96 |
+
setuptools==44.0.0
|
97 |
+
shortuuid==1.0.1
|
98 |
+
six==1.15.0
|
99 |
+
smmap==4.0.0
|
100 |
+
subprocess32==3.5.4
|
101 |
+
tensorboard-data-server==0.6.1
|
102 |
+
tensorboard-plugin-wit==1.8.0
|
103 |
+
tensorboard==2.5.0
|
104 |
+
tensorflow-estimator==2.5.0
|
105 |
+
tensorflow==2.5.0
|
106 |
+
termcolor==1.1.0
|
107 |
+
tokenizers==0.10.3
|
108 |
+
toml==0.10.2
|
109 |
+
toolz==0.11.1
|
110 |
+
torch==1.9.0
|
111 |
+
tqdm==4.61.1
|
112 |
+
traitlets==5.0.5
|
113 |
+
transformers==4.9.0.dev0
|
114 |
+
typing-extensions==3.7.4.3
|
115 |
+
urllib3==1.26.6
|
116 |
+
virtualenv==20.4.7
|
117 |
+
wandb==0.10.33
|
118 |
+
wcwidth==0.2.5
|
119 |
+
werkzeug==2.0.1
|
120 |
+
wheel==0.36.2
|
121 |
+
wrapt==1.12.1
|
122 |
+
xxhash==2.0.2
|
123 |
+
yarl==1.6.3
|
scripts/wandb/run-20210712_044248-12kjsz9i/files/wandb-metadata.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.4.0-1043-gcp-x86_64-with-glibc2.29",
|
3 |
+
"python": "3.8.10",
|
4 |
+
"heartbeatAt": "2021-07-12T04:42:50.208592",
|
5 |
+
"startedAt": "2021-07-12T04:42:48.264668",
|
6 |
+
"docker": null,
|
7 |
+
"cpu_count": 96,
|
8 |
+
"cuda": null,
|
9 |
+
"args": [
|
10 |
+
"--output_dir=../tmp/../gpt-2-tamil/",
|
11 |
+
"--model_type=gpt2",
|
12 |
+
"--config_name=../gpt-2-tamil/",
|
13 |
+
"--tokenizer_name=../gpt-2-tamil/",
|
14 |
+
"--dataset_name=oscar",
|
15 |
+
"--dataset_config_name=unshuffled_deduplicated_ta",
|
16 |
+
"--do_train",
|
17 |
+
"--do_eval",
|
18 |
+
"--block_size=512",
|
19 |
+
"--per_device_train_batch_size=64",
|
20 |
+
"--per_device_eval_batch_size=64",
|
21 |
+
"--learning_rate=3e-5",
|
22 |
+
"--warmup_steps=1000",
|
23 |
+
"--adam_beta1=0.9",
|
24 |
+
"--adam_beta2=0.98",
|
25 |
+
"--weight_decay=0.01",
|
26 |
+
"--overwrite_output_dir",
|
27 |
+
"--num_train_epochs=1",
|
28 |
+
"--report_to",
|
29 |
+
"wandb",
|
30 |
+
"--run_name",
|
31 |
+
"trial"
|
32 |
+
],
|
33 |
+
"state": "running",
|
34 |
+
"program": "../src/run_clm_flax.py",
|
35 |
+
"codePath": "src/run_clm_flax.py",
|
36 |
+
"git": {
|
37 |
+
"remote": "https://github.com/AbinayaM02/GPT2-Tamil.git",
|
38 |
+
"commit": "a828229d00c071e9ced919095290b80e4781210e"
|
39 |
+
},
|
40 |
+
"email": "abinaya.m02@mphasis.com",
|
41 |
+
"root": "/home/tweety_abi/GPT2-Tamil",
|
42 |
+
"host": "t1v-n-ebe36c53-w-0",
|
43 |
+
"username": "tweety_abi",
|
44 |
+
"executable": "/home/tweety_abi/gpt2_env/bin/python"
|
45 |
+
}
|
scripts/wandb/run-20210712_044248-12kjsz9i/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
scripts/wandb/run-20210712_044248-12kjsz9i/logs/debug-internal.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fcfc08cf0afaa70518eae77306ccb85256b1c75804bb875c43e69ead82eecee
|
3 |
+
size 351322
|
scripts/wandb/run-20210712_044248-12kjsz9i/logs/debug.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:629872cc9a122d0b701da9fb5b2d152a25a06d9c316ff22a307c2d5297a5f684
|
3 |
+
size 5672
|
scripts/wandb/run-20210712_044248-12kjsz9i/run-12kjsz9i.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77335af984a7fc18e2e903ce57acfa4f5ee5a60613ffb55a60c3e1996007f5e9
|
3 |
+
size 327917
|
scripts/wandb/run-20210712_164126-1cgtoi5r/files/config.yaml
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
__cached__setup_devices:
|
4 |
+
desc: null
|
5 |
+
value: cpu
|
6 |
+
_n_gpu:
|
7 |
+
desc: null
|
8 |
+
value: 0
|
9 |
+
_wandb:
|
10 |
+
desc: null
|
11 |
+
value:
|
12 |
+
cli_version: 0.10.33
|
13 |
+
framework: huggingface
|
14 |
+
huggingface_version: 4.9.0.dev0
|
15 |
+
is_jupyter_run: false
|
16 |
+
is_kaggle_kernel: false
|
17 |
+
python_version: 3.8.10
|
18 |
+
t:
|
19 |
+
1:
|
20 |
+
- 1
|
21 |
+
- 3
|
22 |
+
- 11
|
23 |
+
2:
|
24 |
+
- 1
|
25 |
+
- 3
|
26 |
+
- 11
|
27 |
+
4: 3.8.10
|
28 |
+
5: 0.10.33
|
29 |
+
6: 4.9.0.dev0
|
30 |
+
8:
|
31 |
+
- 5
|
32 |
+
adafactor:
|
33 |
+
desc: null
|
34 |
+
value: false
|
35 |
+
adam_beta1:
|
36 |
+
desc: null
|
37 |
+
value: 0.9
|
38 |
+
adam_beta2:
|
39 |
+
desc: null
|
40 |
+
value: 0.98
|
41 |
+
adam_epsilon:
|
42 |
+
desc: null
|
43 |
+
value: 1.0e-08
|
44 |
+
block_size:
|
45 |
+
desc: null
|
46 |
+
value: 512
|
47 |
+
cache_dir:
|
48 |
+
desc: null
|
49 |
+
value: null
|
50 |
+
config_name:
|
51 |
+
desc: null
|
52 |
+
value: ../gpt-2-tamil/
|
53 |
+
dataloader_drop_last:
|
54 |
+
desc: null
|
55 |
+
value: false
|
56 |
+
dataloader_num_workers:
|
57 |
+
desc: null
|
58 |
+
value: 0
|
59 |
+
dataloader_pin_memory:
|
60 |
+
desc: null
|
61 |
+
value: true
|
62 |
+
dataset_config_name:
|
63 |
+
desc: null
|
64 |
+
value: unshuffled_deduplicated_ta
|
65 |
+
dataset_name:
|
66 |
+
desc: null
|
67 |
+
value: oscar
|
68 |
+
ddp_find_unused_parameters:
|
69 |
+
desc: null
|
70 |
+
value: null
|
71 |
+
debug:
|
72 |
+
desc: null
|
73 |
+
value: []
|
74 |
+
deepspeed:
|
75 |
+
desc: null
|
76 |
+
value: null
|
77 |
+
disable_tqdm:
|
78 |
+
desc: null
|
79 |
+
value: false
|
80 |
+
do_eval:
|
81 |
+
desc: null
|
82 |
+
value: true
|
83 |
+
do_predict:
|
84 |
+
desc: null
|
85 |
+
value: false
|
86 |
+
do_train:
|
87 |
+
desc: null
|
88 |
+
value: true
|
89 |
+
dtype:
|
90 |
+
desc: null
|
91 |
+
value: float32
|
92 |
+
eval_accumulation_steps:
|
93 |
+
desc: null
|
94 |
+
value: null
|
95 |
+
eval_steps:
|
96 |
+
desc: null
|
97 |
+
value: 2500
|
98 |
+
evaluation_strategy:
|
99 |
+
desc: null
|
100 |
+
value: IntervalStrategy.NO
|
101 |
+
fp16:
|
102 |
+
desc: null
|
103 |
+
value: false
|
104 |
+
fp16_backend:
|
105 |
+
desc: null
|
106 |
+
value: auto
|
107 |
+
fp16_full_eval:
|
108 |
+
desc: null
|
109 |
+
value: false
|
110 |
+
fp16_opt_level:
|
111 |
+
desc: null
|
112 |
+
value: O1
|
113 |
+
gradient_accumulation_steps:
|
114 |
+
desc: null
|
115 |
+
value: 1
|
116 |
+
greater_is_better:
|
117 |
+
desc: null
|
118 |
+
value: null
|
119 |
+
group_by_length:
|
120 |
+
desc: null
|
121 |
+
value: false
|
122 |
+
ignore_data_skip:
|
123 |
+
desc: null
|
124 |
+
value: false
|
125 |
+
label_names:
|
126 |
+
desc: null
|
127 |
+
value: null
|
128 |
+
label_smoothing_factor:
|
129 |
+
desc: null
|
130 |
+
value: 0.0
|
131 |
+
learning_rate:
|
132 |
+
desc: null
|
133 |
+
value: 3.0e-05
|
134 |
+
length_column_name:
|
135 |
+
desc: null
|
136 |
+
value: length
|
137 |
+
load_best_model_at_end:
|
138 |
+
desc: null
|
139 |
+
value: false
|
140 |
+
local_rank:
|
141 |
+
desc: null
|
142 |
+
value: -1
|
143 |
+
log_level:
|
144 |
+
desc: null
|
145 |
+
value: -1
|
146 |
+
log_level_replica:
|
147 |
+
desc: null
|
148 |
+
value: -1
|
149 |
+
log_on_each_node:
|
150 |
+
desc: null
|
151 |
+
value: true
|
152 |
+
logging_dir:
|
153 |
+
desc: null
|
154 |
+
value: ../gpt-2-tamil/runs/Jul12_16-26-59_t1v-n-ebe36c53-w-0
|
155 |
+
logging_first_step:
|
156 |
+
desc: null
|
157 |
+
value: false
|
158 |
+
logging_steps:
|
159 |
+
desc: null
|
160 |
+
value: 500
|
161 |
+
logging_strategy:
|
162 |
+
desc: null
|
163 |
+
value: IntervalStrategy.STEPS
|
164 |
+
lr_scheduler_type:
|
165 |
+
desc: null
|
166 |
+
value: SchedulerType.LINEAR
|
167 |
+
max_eval_samples:
|
168 |
+
desc: null
|
169 |
+
value: null
|
170 |
+
max_grad_norm:
|
171 |
+
desc: null
|
172 |
+
value: 1.0
|
173 |
+
max_steps:
|
174 |
+
desc: null
|
175 |
+
value: -1
|
176 |
+
max_train_samples:
|
177 |
+
desc: null
|
178 |
+
value: null
|
179 |
+
metric_for_best_model:
|
180 |
+
desc: null
|
181 |
+
value: null
|
182 |
+
model_name_or_path:
|
183 |
+
desc: null
|
184 |
+
value: null
|
185 |
+
model_type:
|
186 |
+
desc: null
|
187 |
+
value: gpt2
|
188 |
+
mp_parameters:
|
189 |
+
desc: null
|
190 |
+
value: ''
|
191 |
+
no_cuda:
|
192 |
+
desc: null
|
193 |
+
value: false
|
194 |
+
num_train_epochs:
|
195 |
+
desc: null
|
196 |
+
value: 1.0
|
197 |
+
output_dir:
|
198 |
+
desc: null
|
199 |
+
value: ../gpt-2-tamil/
|
200 |
+
overwrite_cache:
|
201 |
+
desc: null
|
202 |
+
value: false
|
203 |
+
overwrite_output_dir:
|
204 |
+
desc: null
|
205 |
+
value: true
|
206 |
+
past_index:
|
207 |
+
desc: null
|
208 |
+
value: -1
|
209 |
+
per_device_eval_batch_size:
|
210 |
+
desc: null
|
211 |
+
value: 64
|
212 |
+
per_device_train_batch_size:
|
213 |
+
desc: null
|
214 |
+
value: 64
|
215 |
+
per_gpu_eval_batch_size:
|
216 |
+
desc: null
|
217 |
+
value: null
|
218 |
+
per_gpu_train_batch_size:
|
219 |
+
desc: null
|
220 |
+
value: null
|
221 |
+
prediction_loss_only:
|
222 |
+
desc: null
|
223 |
+
value: false
|
224 |
+
preprocessing_num_workers:
|
225 |
+
desc: null
|
226 |
+
value: 90
|
227 |
+
push_to_hub:
|
228 |
+
desc: null
|
229 |
+
value: false
|
230 |
+
push_to_hub_model_id:
|
231 |
+
desc: null
|
232 |
+
value: gpt-2-tamil
|
233 |
+
push_to_hub_organization:
|
234 |
+
desc: null
|
235 |
+
value: null
|
236 |
+
push_to_hub_token:
|
237 |
+
desc: null
|
238 |
+
value: null
|
239 |
+
remove_unused_columns:
|
240 |
+
desc: null
|
241 |
+
value: true
|
242 |
+
report_to:
|
243 |
+
desc: null
|
244 |
+
value:
|
245 |
+
- wandb
|
246 |
+
resume_from_checkpoint:
|
247 |
+
desc: null
|
248 |
+
value: null
|
249 |
+
run_name:
|
250 |
+
desc: null
|
251 |
+
value: trial
|
252 |
+
save_on_each_node:
|
253 |
+
desc: null
|
254 |
+
value: false
|
255 |
+
save_steps:
|
256 |
+
desc: null
|
257 |
+
value: 2500
|
258 |
+
save_strategy:
|
259 |
+
desc: null
|
260 |
+
value: IntervalStrategy.STEPS
|
261 |
+
save_total_limit:
|
262 |
+
desc: null
|
263 |
+
value: null
|
264 |
+
seed:
|
265 |
+
desc: null
|
266 |
+
value: 42
|
267 |
+
sharded_ddp:
|
268 |
+
desc: null
|
269 |
+
value: []
|
270 |
+
skip_memory_metrics:
|
271 |
+
desc: null
|
272 |
+
value: true
|
273 |
+
tokenizer_name:
|
274 |
+
desc: null
|
275 |
+
value: ../gpt-2-tamil/
|
276 |
+
tpu_metrics_debug:
|
277 |
+
desc: null
|
278 |
+
value: false
|
279 |
+
tpu_num_cores:
|
280 |
+
desc: null
|
281 |
+
value: null
|
282 |
+
train_file:
|
283 |
+
desc: null
|
284 |
+
value: null
|
285 |
+
use_fast_tokenizer:
|
286 |
+
desc: null
|
287 |
+
value: true
|
288 |
+
use_legacy_prediction_loop:
|
289 |
+
desc: null
|
290 |
+
value: false
|
291 |
+
validation_file:
|
292 |
+
desc: null
|
293 |
+
value: null
|
294 |
+
validation_split_percentage:
|
295 |
+
desc: null
|
296 |
+
value: 5
|
297 |
+
warmup_ratio:
|
298 |
+
desc: null
|
299 |
+
value: 0.0
|
300 |
+
warmup_steps:
|
301 |
+
desc: null
|
302 |
+
value: 1000
|
303 |
+
weight_decay:
|
304 |
+
desc: null
|
305 |
+
value: 0.01
|
scripts/wandb/run-20210712_164126-1cgtoi5r/files/events.out.tfevents.1626108088.t1v-n-ebe36c53-w-0.483452.3.v2
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/tweety_abi/GPT2-Tamil/gpt-2-tamil/events.out.tfevents.1626108088.t1v-n-ebe36c53-w-0.483452.3.v2
|
scripts/wandb/run-20210712_164126-1cgtoi5r/files/output.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0919562e4d7c8bbdebb2074976c553f66727900bc770c5dd9d8041e3a008931
|
3 |
+
size 2408
|
scripts/wandb/run-20210712_164126-1cgtoi5r/files/requirements.txt
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==0.13.0
|
2 |
+
aiohttp==3.7.4.post0
|
3 |
+
appdirs==1.4.4
|
4 |
+
astunparse==1.6.3
|
5 |
+
async-timeout==3.0.1
|
6 |
+
attrs==21.2.0
|
7 |
+
backcall==0.2.0
|
8 |
+
black==21.6b0
|
9 |
+
cachetools==4.2.2
|
10 |
+
certifi==2021.5.30
|
11 |
+
cfgv==3.3.0
|
12 |
+
chardet==4.0.0
|
13 |
+
chex==0.0.7
|
14 |
+
click==8.0.1
|
15 |
+
configparser==5.0.2
|
16 |
+
cycler==0.10.0
|
17 |
+
datasets==1.8.1.dev0
|
18 |
+
decorator==5.0.9
|
19 |
+
dill==0.3.4
|
20 |
+
distlib==0.3.2
|
21 |
+
dm-tree==0.1.6
|
22 |
+
docker-pycreds==0.4.0
|
23 |
+
filelock==3.0.12
|
24 |
+
flake8==3.9.2
|
25 |
+
flatbuffers==1.12
|
26 |
+
flax==0.3.4
|
27 |
+
fsspec==2021.6.1
|
28 |
+
gast==0.4.0
|
29 |
+
gitdb==4.0.7
|
30 |
+
gitpython==3.1.18
|
31 |
+
google-auth-oauthlib==0.4.4
|
32 |
+
google-auth==1.32.1
|
33 |
+
google-pasta==0.2.0
|
34 |
+
grpcio==1.34.1
|
35 |
+
h5py==3.1.0
|
36 |
+
huggingface-hub==0.0.12
|
37 |
+
identify==2.2.10
|
38 |
+
idna==2.10
|
39 |
+
ipython-genutils==0.2.0
|
40 |
+
ipython==7.25.0
|
41 |
+
isort==5.9.1
|
42 |
+
jax==0.2.16
|
43 |
+
jaxlib==0.1.68
|
44 |
+
jedi==0.18.0
|
45 |
+
joblib==1.0.1
|
46 |
+
keras-nightly==2.5.0.dev2021032900
|
47 |
+
keras-preprocessing==1.1.2
|
48 |
+
kiwisolver==1.3.1
|
49 |
+
libtpu-nightly==0.1.dev20210615
|
50 |
+
markdown==3.3.4
|
51 |
+
matplotlib-inline==0.1.2
|
52 |
+
matplotlib==3.4.2
|
53 |
+
mccabe==0.6.1
|
54 |
+
msgpack==1.0.2
|
55 |
+
multidict==5.1.0
|
56 |
+
multiprocess==0.70.12.2
|
57 |
+
mypy-extensions==0.4.3
|
58 |
+
nodeenv==1.6.0
|
59 |
+
numpy==1.19.5
|
60 |
+
oauthlib==3.1.1
|
61 |
+
opt-einsum==3.3.0
|
62 |
+
optax==0.0.8
|
63 |
+
packaging==20.9
|
64 |
+
pandas==1.2.5
|
65 |
+
parso==0.8.2
|
66 |
+
pathspec==0.8.1
|
67 |
+
pathtools==0.1.2
|
68 |
+
pexpect==4.8.0
|
69 |
+
pickleshare==0.7.5
|
70 |
+
pillow==8.3.0
|
71 |
+
pip==20.0.2
|
72 |
+
pkg-resources==0.0.0
|
73 |
+
pre-commit==2.13.0
|
74 |
+
promise==2.3
|
75 |
+
prompt-toolkit==3.0.19
|
76 |
+
protobuf==3.17.3
|
77 |
+
psutil==5.8.0
|
78 |
+
ptyprocess==0.7.0
|
79 |
+
pyarrow==4.0.1
|
80 |
+
pyasn1-modules==0.2.8
|
81 |
+
pyasn1==0.4.8
|
82 |
+
pycodestyle==2.7.0
|
83 |
+
pyflakes==2.3.1
|
84 |
+
pygments==2.9.0
|
85 |
+
pyparsing==2.4.7
|
86 |
+
python-dateutil==2.8.1
|
87 |
+
pytz==2021.1
|
88 |
+
pyyaml==5.4.1
|
89 |
+
regex==2021.7.1
|
90 |
+
requests-oauthlib==1.3.0
|
91 |
+
requests==2.25.1
|
92 |
+
rsa==4.7.2
|
93 |
+
sacremoses==0.0.45
|
94 |
+
scipy==1.7.0
|
95 |
+
sentry-sdk==1.3.0
|
96 |
+
setuptools==44.0.0
|
97 |
+
shortuuid==1.0.1
|
98 |
+
six==1.15.0
|
99 |
+
smmap==4.0.0
|
100 |
+
subprocess32==3.5.4
|
101 |
+
tensorboard-data-server==0.6.1
|
102 |
+
tensorboard-plugin-wit==1.8.0
|
103 |
+
tensorboard==2.5.0
|
104 |
+
tensorflow-estimator==2.5.0
|
105 |
+
tensorflow==2.5.0
|
106 |
+
termcolor==1.1.0
|
107 |
+
tokenizers==0.10.3
|
108 |
+
toml==0.10.2
|
109 |
+
toolz==0.11.1
|
110 |
+
torch==1.9.0
|
111 |
+
tqdm==4.61.1
|
112 |
+
traitlets==5.0.5
|
113 |
+
transformers==4.9.0.dev0
|
114 |
+
typing-extensions==3.7.4.3
|
115 |
+
urllib3==1.26.6
|
116 |
+
virtualenv==20.4.7
|
117 |
+
wandb==0.10.33
|
118 |
+
wcwidth==0.2.5
|
119 |
+
werkzeug==2.0.1
|
120 |
+
wheel==0.36.2
|
121 |
+
wrapt==1.12.1
|
122 |
+
xxhash==2.0.2
|
123 |
+
yarl==1.6.3
|
scripts/wandb/run-20210712_164126-1cgtoi5r/files/wandb-metadata.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.4.0-1043-gcp-x86_64-with-glibc2.29",
|
3 |
+
"python": "3.8.10",
|
4 |
+
"heartbeatAt": "2021-07-12T16:41:28.249908",
|
5 |
+
"startedAt": "2021-07-12T16:41:26.246514",
|
6 |
+
"docker": null,
|
7 |
+
"cpu_count": 96,
|
8 |
+
"cuda": null,
|
9 |
+
"args": [
|
10 |
+
"--output_dir=../gpt-2-tamil/",
|
11 |
+
"--model_type=gpt2",
|
12 |
+
"--config_name=../gpt-2-tamil/",
|
13 |
+
"--tokenizer_name=../gpt-2-tamil/",
|
14 |
+
"--dataset_name=oscar",
|
15 |
+
"--dataset_config_name=unshuffled_deduplicated_ta",
|
16 |
+
"--do_train",
|
17 |
+
"--do_eval",
|
18 |
+
"--block_size=512",
|
19 |
+
"--per_device_train_batch_size=64",
|
20 |
+
"--per_device_eval_batch_size=64",
|
21 |
+
"--learning_rate=3e-5",
|
22 |
+
"--warmup_steps=1000",
|
23 |
+
"--adam_beta1=0.9",
|
24 |
+
"--adam_beta2=0.98",
|
25 |
+
"--weight_decay=0.01",
|
26 |
+
"--overwrite_output_dir",
|
27 |
+
"--num_train_epochs=1",
|
28 |
+
"--report_to",
|
29 |
+
"wandb",
|
30 |
+
"--run_name",
|
31 |
+
"trial",
|
32 |
+
"--logging_steps=500",
|
33 |
+
"--save_steps=2500",
|
34 |
+
"--eval_steps=2500",
|
35 |
+
"--preprocessing_num_workers=90"
|
36 |
+
],
|
37 |
+
"state": "running",
|
38 |
+
"program": "../src/run_clm_flax.py",
|
39 |
+
"codePath": "src/run_clm_flax.py",
|
40 |
+
"git": {
|
41 |
+
"remote": "https://github.com/AbinayaM02/GPT2-Tamil.git",
|
42 |
+
"commit": "a828229d00c071e9ced919095290b80e4781210e"
|
43 |
+
},
|
44 |
+
"email": "abinaya.m02@mphasis.com",
|
45 |
+
"root": "/home/tweety_abi/GPT2-Tamil",
|
46 |
+
"host": "t1v-n-ebe36c53-w-0",
|
47 |
+
"username": "tweety_abi",
|
48 |
+
"executable": "/home/tweety_abi/gpt2_env/bin/python"
|
49 |
+
}
|
scripts/wandb/run-20210712_164126-1cgtoi5r/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
scripts/wandb/run-20210712_164126-1cgtoi5r/logs/debug-internal.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5042f20446f607f9de1da5328a848218a444a160203dbbe620844d138a5f041
|
3 |
+
size 28874
|
scripts/wandb/run-20210712_164126-1cgtoi5r/logs/debug.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b642e86c06ccde2fecec5b035f7154289468f3126e152b9170e2e8d35b655328
|
3 |
+
size 7649
|
scripts/wandb/run-20210712_164126-1cgtoi5r/run-1cgtoi5r.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1302a66f7718be000865df304f0b21d1471bf7bb1cc55e4aba7e50d6f051725d
|
3 |
+
size 15809
|
scripts/wandb/run-20210712_164633-1ddv4131/files/config.yaml
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
__cached__setup_devices:
|
4 |
+
desc: null
|
5 |
+
value: cpu
|
6 |
+
_n_gpu:
|
7 |
+
desc: null
|
8 |
+
value: 0
|
9 |
+
_wandb:
|
10 |
+
desc: null
|
11 |
+
value:
|
12 |
+
cli_version: 0.10.33
|
13 |
+
framework: huggingface
|
14 |
+
huggingface_version: 4.9.0.dev0
|
15 |
+
is_jupyter_run: false
|
16 |
+
is_kaggle_kernel: false
|
17 |
+
python_version: 3.8.10
|
18 |
+
t:
|
19 |
+
1:
|
20 |
+
- 1
|
21 |
+
- 3
|
22 |
+
- 11
|
23 |
+
2:
|
24 |
+
- 1
|
25 |
+
- 3
|
26 |
+
- 11
|
27 |
+
4: 3.8.10
|
28 |
+
5: 0.10.33
|
29 |
+
6: 4.9.0.dev0
|
30 |
+
8:
|
31 |
+
- 5
|
32 |
+
adafactor:
|
33 |
+
desc: null
|
34 |
+
value: false
|
35 |
+
adam_beta1:
|
36 |
+
desc: null
|
37 |
+
value: 0.9
|
38 |
+
adam_beta2:
|
39 |
+
desc: null
|
40 |
+
value: 0.98
|
41 |
+
adam_epsilon:
|
42 |
+
desc: null
|
43 |
+
value: 1.0e-08
|
44 |
+
block_size:
|
45 |
+
desc: null
|
46 |
+
value: 512
|
47 |
+
cache_dir:
|
48 |
+
desc: null
|
49 |
+
value: null
|
50 |
+
config_name:
|
51 |
+
desc: null
|
52 |
+
value: ../gpt-2-tamil/
|
53 |
+
dataloader_drop_last:
|
54 |
+
desc: null
|
55 |
+
value: false
|
56 |
+
dataloader_num_workers:
|
57 |
+
desc: null
|
58 |
+
value: 0
|
59 |
+
dataloader_pin_memory:
|
60 |
+
desc: null
|
61 |
+
value: true
|
62 |
+
dataset_config_name:
|
63 |
+
desc: null
|
64 |
+
value: unshuffled_deduplicated_ta
|
65 |
+
dataset_name:
|
66 |
+
desc: null
|
67 |
+
value: oscar
|
68 |
+
ddp_find_unused_parameters:
|
69 |
+
desc: null
|
70 |
+
value: null
|
71 |
+
debug:
|
72 |
+
desc: null
|
73 |
+
value: []
|
74 |
+
deepspeed:
|
75 |
+
desc: null
|
76 |
+
value: null
|
77 |
+
disable_tqdm:
|
78 |
+
desc: null
|
79 |
+
value: false
|
80 |
+
do_eval:
|
81 |
+
desc: null
|
82 |
+
value: true
|
83 |
+
do_predict:
|
84 |
+
desc: null
|
85 |
+
value: false
|
86 |
+
do_train:
|
87 |
+
desc: null
|
88 |
+
value: true
|
89 |
+
dtype:
|
90 |
+
desc: null
|
91 |
+
value: float32
|
92 |
+
eval_accumulation_steps:
|
93 |
+
desc: null
|
94 |
+
value: null
|
95 |
+
eval_steps:
|
96 |
+
desc: null
|
97 |
+
value: 2500
|
98 |
+
evaluation_strategy:
|
99 |
+
desc: null
|
100 |
+
value: IntervalStrategy.NO
|
101 |
+
fp16:
|
102 |
+
desc: null
|
103 |
+
value: false
|
104 |
+
fp16_backend:
|
105 |
+
desc: null
|
106 |
+
value: auto
|
107 |
+
fp16_full_eval:
|
108 |
+
desc: null
|
109 |
+
value: false
|
110 |
+
fp16_opt_level:
|
111 |
+
desc: null
|
112 |
+
value: O1
|
113 |
+
gradient_accumulation_steps:
|
114 |
+
desc: null
|
115 |
+
value: 1
|
116 |
+
greater_is_better:
|
117 |
+
desc: null
|
118 |
+
value: null
|
119 |
+
group_by_length:
|
120 |
+
desc: null
|
121 |
+
value: false
|
122 |
+
ignore_data_skip:
|
123 |
+
desc: null
|
124 |
+
value: false
|
125 |
+
label_names:
|
126 |
+
desc: null
|
127 |
+
value: null
|
128 |
+
label_smoothing_factor:
|
129 |
+
desc: null
|
130 |
+
value: 0.0
|
131 |
+
learning_rate:
|
132 |
+
desc: null
|
133 |
+
value: 3.0e-05
|
134 |
+
length_column_name:
|
135 |
+
desc: null
|
136 |
+
value: length
|
137 |
+
load_best_model_at_end:
|
138 |
+
desc: null
|
139 |
+
value: false
|
140 |
+
local_rank:
|
141 |
+
desc: null
|
142 |
+
value: -1
|
143 |
+
log_level:
|
144 |
+
desc: null
|
145 |
+
value: -1
|
146 |
+
log_level_replica:
|
147 |
+
desc: null
|
148 |
+
value: -1
|
149 |
+
log_on_each_node:
|
150 |
+
desc: null
|
151 |
+
value: true
|
152 |
+
logging_dir:
|
153 |
+
desc: null
|
154 |
+
value: ../gpt-2-tamil/runs/Jul12_16-45-48_t1v-n-ebe36c53-w-0
|
155 |
+
logging_first_step:
|
156 |
+
desc: null
|
157 |
+
value: false
|
158 |
+
logging_steps:
|
159 |
+
desc: null
|
160 |
+
value: 500
|
161 |
+
logging_strategy:
|
162 |
+
desc: null
|
163 |
+
value: IntervalStrategy.STEPS
|
164 |
+
lr_scheduler_type:
|
165 |
+
desc: null
|
166 |
+
value: SchedulerType.LINEAR
|
167 |
+
max_eval_samples:
|
168 |
+
desc: null
|
169 |
+
value: null
|
170 |
+
max_grad_norm:
|
171 |
+
desc: null
|
172 |
+
value: 1.0
|
173 |
+
max_steps:
|
174 |
+
desc: null
|
175 |
+
value: -1
|
176 |
+
max_train_samples:
|
177 |
+
desc: null
|
178 |
+
value: null
|
179 |
+
metric_for_best_model:
|
180 |
+
desc: null
|
181 |
+
value: null
|
182 |
+
model_name_or_path:
|
183 |
+
desc: null
|
184 |
+
value: null
|
185 |
+
model_type:
|
186 |
+
desc: null
|
187 |
+
value: gpt2
|
188 |
+
mp_parameters:
|
189 |
+
desc: null
|
190 |
+
value: ''
|
191 |
+
no_cuda:
|
192 |
+
desc: null
|
193 |
+
value: false
|
194 |
+
num_train_epochs:
|
195 |
+
desc: null
|
196 |
+
value: 25.0
|
197 |
+
output_dir:
|
198 |
+
desc: null
|
199 |
+
value: ../gpt-2-tamil/
|
200 |
+
overwrite_cache:
|
201 |
+
desc: null
|
202 |
+
value: false
|
203 |
+
overwrite_output_dir:
|
204 |
+
desc: null
|
205 |
+
value: true
|
206 |
+
past_index:
|
207 |
+
desc: null
|
208 |
+
value: -1
|
209 |
+
per_device_eval_batch_size:
|
210 |
+
desc: null
|
211 |
+
value: 64
|
212 |
+
per_device_train_batch_size:
|
213 |
+
desc: null
|
214 |
+
value: 64
|
215 |
+
per_gpu_eval_batch_size:
|
216 |
+
desc: null
|
217 |
+
value: null
|
218 |
+
per_gpu_train_batch_size:
|
219 |
+
desc: null
|
220 |
+
value: null
|
221 |
+
prediction_loss_only:
|
222 |
+
desc: null
|
223 |
+
value: false
|
224 |
+
preprocessing_num_workers:
|
225 |
+
desc: null
|
226 |
+
value: 90
|
227 |
+
push_to_hub:
|
228 |
+
desc: null
|
229 |
+
value: false
|
230 |
+
push_to_hub_model_id:
|
231 |
+
desc: null
|
232 |
+
value: gpt-2-tamil
|
233 |
+
push_to_hub_organization:
|
234 |
+
desc: null
|
235 |
+
value: null
|
236 |
+
push_to_hub_token:
|
237 |
+
desc: null
|
238 |
+
value: null
|
239 |
+
remove_unused_columns:
|
240 |
+
desc: null
|
241 |
+
value: true
|
242 |
+
report_to:
|
243 |
+
desc: null
|
244 |
+
value:
|
245 |
+
- wandb
|
246 |
+
resume_from_checkpoint:
|
247 |
+
desc: null
|
248 |
+
value: null
|
249 |
+
run_name:
|
250 |
+
desc: null
|
251 |
+
value: trial
|
252 |
+
save_on_each_node:
|
253 |
+
desc: null
|
254 |
+
value: false
|
255 |
+
save_steps:
|
256 |
+
desc: null
|
257 |
+
value: 2500
|
258 |
+
save_strategy:
|
259 |
+
desc: null
|
260 |
+
value: IntervalStrategy.STEPS
|
261 |
+
save_total_limit:
|
262 |
+
desc: null
|
263 |
+
value: null
|
264 |
+
seed:
|
265 |
+
desc: null
|
266 |
+
value: 42
|
267 |
+
sharded_ddp:
|
268 |
+
desc: null
|
269 |
+
value: []
|
270 |
+
skip_memory_metrics:
|
271 |
+
desc: null
|
272 |
+
value: true
|
273 |
+
tokenizer_name:
|
274 |
+
desc: null
|
275 |
+
value: ../gpt-2-tamil/
|
276 |
+
tpu_metrics_debug:
|
277 |
+
desc: null
|
278 |
+
value: false
|
279 |
+
tpu_num_cores:
|
280 |
+
desc: null
|
281 |
+
value: null
|
282 |
+
train_file:
|
283 |
+
desc: null
|
284 |
+
value: null
|
285 |
+
use_fast_tokenizer:
|
286 |
+
desc: null
|
287 |
+
value: true
|
288 |
+
use_legacy_prediction_loop:
|
289 |
+
desc: null
|
290 |
+
value: false
|
291 |
+
validation_file:
|
292 |
+
desc: null
|
293 |
+
value: null
|
294 |
+
validation_split_percentage:
|
295 |
+
desc: null
|
296 |
+
value: 5
|
297 |
+
warmup_ratio:
|
298 |
+
desc: null
|
299 |
+
value: 0.0
|
300 |
+
warmup_steps:
|
301 |
+
desc: null
|
302 |
+
value: 1000
|
303 |
+
weight_decay:
|
304 |
+
desc: null
|
305 |
+
value: 0.01
|
scripts/wandb/run-20210712_164633-1ddv4131/files/events.out.tfevents.1626108395.t1v-n-ebe36c53-w-0.486342.3.v2
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/tweety_abi/GPT2-Tamil/gpt-2-tamil/events.out.tfevents.1626108395.t1v-n-ebe36c53-w-0.486342.3.v2
|
scripts/wandb/run-20210712_164633-1ddv4131/files/output.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d9761e7442f5b6b99224ee68ee38f3b7e486ead79f4e390bf7e258dc16de973
|
3 |
+
size 4407657
|
scripts/wandb/run-20210712_164633-1ddv4131/files/requirements.txt
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==0.13.0
|
2 |
+
aiohttp==3.7.4.post0
|
3 |
+
appdirs==1.4.4
|
4 |
+
astunparse==1.6.3
|
5 |
+
async-timeout==3.0.1
|
6 |
+
attrs==21.2.0
|
7 |
+
backcall==0.2.0
|
8 |
+
black==21.6b0
|
9 |
+
cachetools==4.2.2
|
10 |
+
certifi==2021.5.30
|
11 |
+
cfgv==3.3.0
|
12 |
+
chardet==4.0.0
|
13 |
+
chex==0.0.7
|
14 |
+
click==8.0.1
|
15 |
+
configparser==5.0.2
|
16 |
+
cycler==0.10.0
|
17 |
+
datasets==1.8.1.dev0
|
18 |
+
decorator==5.0.9
|
19 |
+
dill==0.3.4
|
20 |
+
distlib==0.3.2
|
21 |
+
dm-tree==0.1.6
|
22 |
+
docker-pycreds==0.4.0
|
23 |
+
filelock==3.0.12
|
24 |
+
flake8==3.9.2
|
25 |
+
flatbuffers==1.12
|
26 |
+
flax==0.3.4
|
27 |
+
fsspec==2021.6.1
|
28 |
+
gast==0.4.0
|
29 |
+
gitdb==4.0.7
|
30 |
+
gitpython==3.1.18
|
31 |
+
google-auth-oauthlib==0.4.4
|
32 |
+
google-auth==1.32.1
|
33 |
+
google-pasta==0.2.0
|
34 |
+
grpcio==1.34.1
|
35 |
+
h5py==3.1.0
|
36 |
+
huggingface-hub==0.0.12
|
37 |
+
identify==2.2.10
|
38 |
+
idna==2.10
|
39 |
+
ipython-genutils==0.2.0
|
40 |
+
ipython==7.25.0
|
41 |
+
isort==5.9.1
|
42 |
+
jax==0.2.16
|
43 |
+
jaxlib==0.1.68
|
44 |
+
jedi==0.18.0
|
45 |
+
joblib==1.0.1
|
46 |
+
keras-nightly==2.5.0.dev2021032900
|
47 |
+
keras-preprocessing==1.1.2
|
48 |
+
kiwisolver==1.3.1
|
49 |
+
libtpu-nightly==0.1.dev20210615
|
50 |
+
markdown==3.3.4
|
51 |
+
matplotlib-inline==0.1.2
|
52 |
+
matplotlib==3.4.2
|
53 |
+
mccabe==0.6.1
|
54 |
+
msgpack==1.0.2
|
55 |
+
multidict==5.1.0
|
56 |
+
multiprocess==0.70.12.2
|
57 |
+
mypy-extensions==0.4.3
|
58 |
+
nodeenv==1.6.0
|
59 |
+
numpy==1.19.5
|
60 |
+
oauthlib==3.1.1
|
61 |
+
opt-einsum==3.3.0
|
62 |
+
optax==0.0.8
|
63 |
+
packaging==20.9
|
64 |
+
pandas==1.2.5
|
65 |
+
parso==0.8.2
|
66 |
+
pathspec==0.8.1
|
67 |
+
pathtools==0.1.2
|
68 |
+
pexpect==4.8.0
|
69 |
+
pickleshare==0.7.5
|
70 |
+
pillow==8.3.0
|
71 |
+
pip==20.0.2
|
72 |
+
pkg-resources==0.0.0
|
73 |
+
pre-commit==2.13.0
|
74 |
+
promise==2.3
|
75 |
+
prompt-toolkit==3.0.19
|
76 |
+
protobuf==3.17.3
|
77 |
+
psutil==5.8.0
|
78 |
+
ptyprocess==0.7.0
|
79 |
+
pyarrow==4.0.1
|
80 |
+
pyasn1-modules==0.2.8
|
81 |
+
pyasn1==0.4.8
|
82 |
+
pycodestyle==2.7.0
|
83 |
+
pyflakes==2.3.1
|
84 |
+
pygments==2.9.0
|
85 |
+
pyparsing==2.4.7
|
86 |
+
python-dateutil==2.8.1
|
87 |
+
pytz==2021.1
|
88 |
+
pyyaml==5.4.1
|
89 |
+
regex==2021.7.1
|
90 |
+
requests-oauthlib==1.3.0
|
91 |
+
requests==2.25.1
|
92 |
+
rsa==4.7.2
|
93 |
+
sacremoses==0.0.45
|
94 |
+
scipy==1.7.0
|
95 |
+
sentry-sdk==1.3.0
|
96 |
+
setuptools==44.0.0
|
97 |
+
shortuuid==1.0.1
|
98 |
+
six==1.15.0
|
99 |
+
smmap==4.0.0
|
100 |
+
subprocess32==3.5.4
|
101 |
+
tensorboard-data-server==0.6.1
|
102 |
+
tensorboard-plugin-wit==1.8.0
|
103 |
+
tensorboard==2.5.0
|
104 |
+
tensorflow-estimator==2.5.0
|
105 |
+
tensorflow==2.5.0
|
106 |
+
termcolor==1.1.0
|
107 |
+
tokenizers==0.10.3
|
108 |
+
toml==0.10.2
|
109 |
+
toolz==0.11.1
|
110 |
+
torch==1.9.0
|
111 |
+
tqdm==4.61.1
|
112 |
+
traitlets==5.0.5
|
113 |
+
transformers==4.9.0.dev0
|
114 |
+
typing-extensions==3.7.4.3
|
115 |
+
urllib3==1.26.6
|
116 |
+
virtualenv==20.4.7
|
117 |
+
wandb==0.10.33
|
118 |
+
wcwidth==0.2.5
|
119 |
+
werkzeug==2.0.1
|
120 |
+
wheel==0.36.2
|
121 |
+
wrapt==1.12.1
|
122 |
+
xxhash==2.0.2
|
123 |
+
yarl==1.6.3
|
scripts/wandb/run-20210712_164633-1ddv4131/files/wandb-metadata.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.4.0-1043-gcp-x86_64-with-glibc2.29",
|
3 |
+
"python": "3.8.10",
|
4 |
+
"heartbeatAt": "2021-07-12T16:46:35.350252",
|
5 |
+
"startedAt": "2021-07-12T16:46:33.416306",
|
6 |
+
"docker": null,
|
7 |
+
"cpu_count": 96,
|
8 |
+
"cuda": null,
|
9 |
+
"args": [
|
10 |
+
"--output_dir=../gpt-2-tamil/",
|
11 |
+
"--model_type=gpt2",
|
12 |
+
"--config_name=../gpt-2-tamil/",
|
13 |
+
"--tokenizer_name=../gpt-2-tamil/",
|
14 |
+
"--dataset_name=oscar",
|
15 |
+
"--dataset_config_name=unshuffled_deduplicated_ta",
|
16 |
+
"--do_train",
|
17 |
+
"--do_eval",
|
18 |
+
"--block_size=512",
|
19 |
+
"--per_device_train_batch_size=64",
|
20 |
+
"--per_device_eval_batch_size=64",
|
21 |
+
"--learning_rate=3e-5",
|
22 |
+
"--warmup_steps=1000",
|
23 |
+
"--adam_beta1=0.9",
|
24 |
+
"--adam_beta2=0.98",
|
25 |
+
"--weight_decay=0.01",
|
26 |
+
"--overwrite_output_dir",
|
27 |
+
"--num_train_epochs=25",
|
28 |
+
"--report_to",
|
29 |
+
"wandb",
|
30 |
+
"--run_name",
|
31 |
+
"trial",
|
32 |
+
"--logging_steps=500",
|
33 |
+
"--save_steps=2500",
|
34 |
+
"--eval_steps=2500",
|
35 |
+
"--preprocessing_num_workers=90"
|
36 |
+
],
|
37 |
+
"state": "running",
|
38 |
+
"program": "../src/run_clm_flax.py",
|
39 |
+
"codePath": "src/run_clm_flax.py",
|
40 |
+
"git": {
|
41 |
+
"remote": "https://github.com/AbinayaM02/GPT2-Tamil.git",
|
42 |
+
"commit": "5d59c6a635e952a0f51ef33ed713960a04e9dcb6"
|
43 |
+
},
|
44 |
+
"email": "abinaya.m02@mphasis.com",
|
45 |
+
"root": "/home/tweety_abi/GPT2-Tamil",
|
46 |
+
"host": "t1v-n-ebe36c53-w-0",
|
47 |
+
"username": "tweety_abi",
|
48 |
+
"executable": "/home/tweety_abi/gpt2_env/bin/python"
|
49 |
+
}
|
scripts/wandb/run-20210712_164633-1ddv4131/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"global_step": 132500, "_timestamp": 1626248099.379086, "train_time": 743654.875, "train_learning_rate": 1.1402963906448349e-08, "_step": 264206, "train_loss": 1.1299134492874146, "eval_loss": 1.1545542478561401, "eval_perplexity": 3.1726088523864746}
|
scripts/wandb/run-20210712_164633-1ddv4131/logs/debug-internal.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:748fffc8fe7bbd39d404a1bae61d5711a3e098491142dc28b16d5d75e32dc937
|
3 |
+
size 97283434
|
scripts/wandb/run-20210712_164633-1ddv4131/logs/debug.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36e11410ff19af1db092231a1450397dffb80ef21248540b6d372dcf5606559c
|
3 |
+
size 8797
|
scripts/wandb/run-20210712_164633-1ddv4131/run-1ddv4131.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8211487b4d0a0489ae4728120abad1be7ee4190520afc47fdae166087ae6068
|
3 |
+
size 60817322
|
src/create_config.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from transformers import GPT2Config
|
2 |
|
3 |
-
model_dir = "
|
4 |
|
5 |
config = GPT2Config.from_pretrained(
|
6 |
"gpt2", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0
|
|
|
1 |
from transformers import GPT2Config
|
2 |
|
3 |
+
model_dir = "../gpt-2-tamil" # ${MODEL_DIR}
|
4 |
|
5 |
config = GPT2Config.from_pretrained(
|
6 |
"gpt2", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0
|
src/run_clm_flax.py
CHANGED
@@ -31,16 +31,18 @@ from pathlib import Path
|
|
31 |
from typing import Callable, Optional
|
32 |
|
33 |
import datasets
|
|
|
|
|
|
|
34 |
import jax
|
35 |
import jax.numpy as jnp
|
36 |
import optax
|
37 |
import transformers
|
38 |
-
|
39 |
from flax import jax_utils, traverse_util
|
40 |
from flax.jax_utils import unreplicate
|
41 |
from flax.training import train_state
|
42 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
43 |
-
from tqdm import tqdm
|
44 |
from transformers import (
|
45 |
CONFIG_MAPPING,
|
46 |
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
|
@@ -53,25 +55,8 @@ from transformers import (
|
|
53 |
)
|
54 |
from transformers.testing_utils import CaptureLogger
|
55 |
|
56 |
-
logger = logging.getLogger(__name__)
|
57 |
-
|
58 |
-
# Cache the result
|
59 |
-
has_tensorboard = is_tensorboard_available()
|
60 |
-
if has_tensorboard:
|
61 |
-
try:
|
62 |
-
from flax.metrics.tensorboard import SummaryWriter
|
63 |
-
except ImportError as ie:
|
64 |
-
has_tensorboard = False
|
65 |
-
print(
|
66 |
-
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
67 |
-
)
|
68 |
-
|
69 |
-
else:
|
70 |
-
print(
|
71 |
-
"Unable to display metrics through TensorBoard because the package is not installed: "
|
72 |
-
"Please run pip install tensorboard to enable."
|
73 |
-
)
|
74 |
|
|
|
75 |
|
76 |
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
77 |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
@@ -92,34 +77,20 @@ class ModelArguments:
|
|
92 |
)
|
93 |
model_type: Optional[str] = field(
|
94 |
default=None,
|
95 |
-
metadata={
|
96 |
-
"help": "If training from scratch, pass a model type from the list: "
|
97 |
-
+ ", ".join(MODEL_TYPES)
|
98 |
-
},
|
99 |
)
|
100 |
config_name: Optional[str] = field(
|
101 |
-
default=None,
|
102 |
-
metadata={
|
103 |
-
"help": "Pretrained config name or path if not the same as model_name"
|
104 |
-
},
|
105 |
)
|
106 |
tokenizer_name: Optional[str] = field(
|
107 |
-
default=None,
|
108 |
-
metadata={
|
109 |
-
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
110 |
-
},
|
111 |
)
|
112 |
cache_dir: Optional[str] = field(
|
113 |
-
default=None,
|
114 |
-
metadata={
|
115 |
-
"help": "Where do you want to store the pretrained models downloaded from s3"
|
116 |
-
},
|
117 |
)
|
118 |
use_fast_tokenizer: bool = field(
|
119 |
default=True,
|
120 |
-
metadata={
|
121 |
-
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
122 |
-
},
|
123 |
)
|
124 |
dtype: Optional[str] = field(
|
125 |
default="float32",
|
@@ -136,26 +107,15 @@ class DataTrainingArguments:
|
|
136 |
"""
|
137 |
|
138 |
dataset_name: Optional[str] = field(
|
139 |
-
default=None,
|
140 |
-
metadata={
|
141 |
-
"help": "The name of the dataset to use (via the datasets library)."
|
142 |
-
},
|
143 |
)
|
144 |
dataset_config_name: Optional[str] = field(
|
145 |
-
default=None,
|
146 |
-
metadata={
|
147 |
-
"help": "The configuration name of the dataset to use (via the datasets library)."
|
148 |
-
},
|
149 |
-
)
|
150 |
-
train_file: Optional[str] = field(
|
151 |
-
default=None,
|
152 |
-
metadata={"help": "The input training data file (a text file)."},
|
153 |
)
|
|
|
154 |
validation_file: Optional[str] = field(
|
155 |
default=None,
|
156 |
-
metadata={
|
157 |
-
"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."
|
158 |
-
},
|
159 |
)
|
160 |
max_train_samples: Optional[int] = field(
|
161 |
default=None,
|
@@ -172,8 +132,7 @@ class DataTrainingArguments:
|
|
172 |
},
|
173 |
)
|
174 |
overwrite_cache: bool = field(
|
175 |
-
default=False,
|
176 |
-
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
177 |
)
|
178 |
validation_split_percentage: Optional[int] = field(
|
179 |
default=5,
|
@@ -190,8 +149,7 @@ class DataTrainingArguments:
|
|
190 |
},
|
191 |
)
|
192 |
overwrite_cache: bool = field(
|
193 |
-
default=False,
|
194 |
-
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
195 |
)
|
196 |
preprocessing_num_workers: Optional[int] = field(
|
197 |
default=None,
|
@@ -199,43 +157,25 @@ class DataTrainingArguments:
|
|
199 |
)
|
200 |
|
201 |
def __post_init__(self):
|
202 |
-
if
|
203 |
-
|
204 |
-
and self.train_file is None
|
205 |
-
and self.validation_file is None
|
206 |
-
):
|
207 |
-
raise ValueError(
|
208 |
-
"Need either a dataset name or a training/validation file."
|
209 |
-
)
|
210 |
else:
|
211 |
if self.train_file is not None:
|
212 |
extension = self.train_file.split(".")[-1]
|
213 |
-
assert extension in [
|
214 |
-
"csv",
|
215 |
-
"json",
|
216 |
-
"txt",
|
217 |
-
], "`train_file` should be a csv, a json or a txt file."
|
218 |
if self.validation_file is not None:
|
219 |
extension = self.validation_file.split(".")[-1]
|
220 |
-
assert extension in [
|
221 |
-
"csv",
|
222 |
-
"json",
|
223 |
-
"txt",
|
224 |
-
], "`validation_file` should be a csv, a json or a txt file."
|
225 |
|
226 |
|
227 |
class TrainState(train_state.TrainState):
|
228 |
dropout_rng: jnp.ndarray
|
229 |
|
230 |
def replicate(self):
|
231 |
-
return jax_utils.replicate(self).replace(
|
232 |
-
dropout_rng=shard_prng_key(self.dropout_rng)
|
233 |
-
)
|
234 |
|
235 |
|
236 |
-
def data_loader(
|
237 |
-
rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False
|
238 |
-
):
|
239 |
"""
|
240 |
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
241 |
Shuffle batches if `shuffle` is `True`.
|
@@ -259,7 +199,7 @@ def data_loader(
|
|
259 |
yield batch
|
260 |
|
261 |
|
262 |
-
def
|
263 |
summary_writer.scalar("train_time", train_time, step)
|
264 |
|
265 |
train_metrics = get_metrics(train_metrics)
|
@@ -268,31 +208,23 @@ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
|
268 |
for i, val in enumerate(vals):
|
269 |
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
270 |
|
|
|
|
|
271 |
for metric_name, value in eval_metrics.items():
|
272 |
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
273 |
|
274 |
|
275 |
def create_learning_rate_fn(
|
276 |
-
train_ds_size: int,
|
277 |
-
train_batch_size: int,
|
278 |
-
num_train_epochs: int,
|
279 |
-
num_warmup_steps: int,
|
280 |
-
learning_rate: float,
|
281 |
) -> Callable[[int], jnp.array]:
|
282 |
"""Returns a linear warmup, linear_decay learning rate function."""
|
283 |
steps_per_epoch = train_ds_size // train_batch_size
|
284 |
num_train_steps = steps_per_epoch * num_train_epochs
|
285 |
-
warmup_fn = optax.linear_schedule(
|
286 |
-
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
287 |
-
)
|
288 |
decay_fn = optax.linear_schedule(
|
289 |
-
init_value=learning_rate,
|
290 |
-
end_value=0,
|
291 |
-
transition_steps=num_train_steps - num_warmup_steps,
|
292 |
-
)
|
293 |
-
schedule_fn = optax.join_schedules(
|
294 |
-
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
|
295 |
)
|
|
|
296 |
return schedule_fn
|
297 |
|
298 |
|
@@ -301,15 +233,11 @@ def main():
|
|
301 |
# or by passing the --help flag to this script.
|
302 |
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
303 |
|
304 |
-
parser = HfArgumentParser(
|
305 |
-
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
306 |
-
)
|
307 |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
308 |
# If we pass only one argument to the script and it's the path to a json file,
|
309 |
# let's parse it to get our arguments.
|
310 |
-
model_args, data_args, training_args = parser.parse_json_file(
|
311 |
-
json_file=os.path.abspath(sys.argv[1])
|
312 |
-
)
|
313 |
else:
|
314 |
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
315 |
|
@@ -351,14 +279,10 @@ def main():
|
|
351 |
#
|
352 |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
353 |
# download the dataset.
|
354 |
-
logger.info("Loading dataset....")
|
355 |
if data_args.dataset_name is not None:
|
356 |
# Downloading and loading a dataset from the hub.
|
357 |
dataset = load_dataset(
|
358 |
-
data_args.dataset_name,
|
359 |
-
data_args.dataset_config_name,
|
360 |
-
cache_dir=model_args.cache_dir,
|
361 |
-
keep_in_memory=False,
|
362 |
)
|
363 |
|
364 |
if "validation" not in dataset.keys():
|
@@ -383,10 +307,7 @@ def main():
|
|
383 |
extension = data_args.train_file.split(".")[-1]
|
384 |
if extension == "txt":
|
385 |
extension = "text"
|
386 |
-
|
387 |
-
dataset = load_dataset(
|
388 |
-
extension, data_files=data_files, cache_dir=model_args.cache_dir
|
389 |
-
)
|
390 |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
391 |
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
392 |
|
@@ -396,28 +317,20 @@ def main():
|
|
396 |
# The .from_pretrained methods guarantee that only one local process can concurrently
|
397 |
# download model & vocab.
|
398 |
if model_args.config_name:
|
399 |
-
config = AutoConfig.from_pretrained(
|
400 |
-
model_args.config_name, cache_dir=model_args.cache_dir
|
401 |
-
)
|
402 |
elif model_args.model_name_or_path:
|
403 |
-
config = AutoConfig.from_pretrained(
|
404 |
-
model_args.model_name_or_path, cache_dir=model_args.cache_dir
|
405 |
-
)
|
406 |
else:
|
407 |
config = CONFIG_MAPPING[model_args.model_type]()
|
408 |
logger.warning("You are instantiating a new config instance from scratch.")
|
409 |
|
410 |
if model_args.tokenizer_name:
|
411 |
tokenizer = AutoTokenizer.from_pretrained(
|
412 |
-
model_args.tokenizer_name,
|
413 |
-
cache_dir=model_args.cache_dir,
|
414 |
-
use_fast=model_args.use_fast_tokenizer,
|
415 |
)
|
416 |
elif model_args.model_name_or_path:
|
417 |
tokenizer = AutoTokenizer.from_pretrained(
|
418 |
-
model_args.model_name_or_path,
|
419 |
-
cache_dir=model_args.cache_dir,
|
420 |
-
use_fast=model_args.use_fast_tokenizer,
|
421 |
)
|
422 |
else:
|
423 |
raise ValueError(
|
@@ -427,10 +340,7 @@ def main():
|
|
427 |
|
428 |
if model_args.model_name_or_path:
|
429 |
model = FlaxAutoModelForCausalLM.from_pretrained(
|
430 |
-
model_args.model_name_or_path,
|
431 |
-
config=config,
|
432 |
-
seed=training_args.seed,
|
433 |
-
dtype=getattr(jnp, model_args.dtype),
|
434 |
)
|
435 |
else:
|
436 |
model = FlaxAutoModelForCausalLM.from_config(
|
@@ -446,9 +356,7 @@ def main():
|
|
446 |
text_column_name = "text" if "text" in column_names else column_names[0]
|
447 |
|
448 |
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
|
449 |
-
tok_logger = transformers.utils.logging.get_logger(
|
450 |
-
"transformers.tokenization_utils_base"
|
451 |
-
)
|
452 |
|
453 |
def tokenize_function(examples):
|
454 |
with CaptureLogger(tok_logger) as cl:
|
@@ -491,7 +399,8 @@ def main():
|
|
491 |
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
492 |
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
493 |
# customize this part to your needs.
|
494 |
-
|
|
|
495 |
# Split by chunks of max_len.
|
496 |
result = {
|
497 |
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
@@ -529,8 +438,32 @@ def main():
|
|
529 |
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
530 |
|
531 |
# Enable tensorboard only on the master node
|
|
|
532 |
if has_tensorboard and jax.process_index() == 0:
|
533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
|
535 |
# Initialize our training
|
536 |
rng = jax.random.PRNGKey(training_args.seed)
|
@@ -538,12 +471,8 @@ def main():
|
|
538 |
|
539 |
# Store some constant
|
540 |
num_epochs = int(training_args.num_train_epochs)
|
541 |
-
train_batch_size = (
|
542 |
-
|
543 |
-
)
|
544 |
-
eval_batch_size = (
|
545 |
-
int(training_args.per_device_eval_batch_size) * jax.device_count()
|
546 |
-
)
|
547 |
steps_per_epoch = len(train_dataset) // train_batch_size
|
548 |
total_train_steps = steps_per_epoch * num_epochs
|
549 |
|
@@ -566,39 +495,35 @@ def main():
|
|
566 |
def decay_mask_fn(params):
|
567 |
flat_params = traverse_util.flatten_dict(params)
|
568 |
flat_mask = {
|
569 |
-
path: (
|
570 |
-
path[-1] != "bias"
|
571 |
-
and path[-2:]
|
572 |
-
not in [("ln_1", "scale"), ("ln_2", "scale"), ("ln_f", "scale")]
|
573 |
-
)
|
574 |
for path in flat_params
|
575 |
}
|
576 |
return traverse_util.unflatten_dict(flat_mask)
|
577 |
|
578 |
# create adam optimizer
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
|
588 |
# Setup train state
|
589 |
-
state = TrainState.create(
|
590 |
-
apply_fn=model.__call__,
|
591 |
-
params=model.params,
|
592 |
-
tx=adamw,
|
593 |
-
dropout_rng=dropout_rng,
|
594 |
-
)
|
595 |
|
596 |
def loss_fn(logits, labels):
|
597 |
shift_logits = logits[..., :-1, :]
|
598 |
shift_labels = labels[..., 1:]
|
599 |
-
loss = optax.softmax_cross_entropy(
|
600 |
-
shift_logits, onehot(shift_labels, shift_logits.shape[-1])
|
601 |
-
)
|
602 |
return loss.mean()
|
603 |
|
604 |
# Define gradient update step fn
|
@@ -607,9 +532,7 @@ def main():
|
|
607 |
|
608 |
def compute_loss(params):
|
609 |
labels = batch.pop("labels")
|
610 |
-
logits = state.apply_fn(
|
611 |
-
**batch, params=params, dropout_rng=dropout_rng, train=True
|
612 |
-
)[0]
|
613 |
loss = loss_fn(logits, labels)
|
614 |
return loss
|
615 |
|
@@ -619,10 +542,7 @@ def main():
|
|
619 |
|
620 |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
621 |
|
622 |
-
metrics = {
|
623 |
-
"loss": loss,
|
624 |
-
"learning_rate": linear_decay_lr_schedule_fn(state.step),
|
625 |
-
}
|
626 |
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
627 |
|
628 |
return new_state, metrics
|
@@ -648,15 +568,12 @@ def main():
|
|
648 |
logger.info("***** Running training *****")
|
649 |
logger.info(f" Num examples = {len(train_dataset)}")
|
650 |
logger.info(f" Num Epochs = {num_epochs}")
|
651 |
-
logger.info(
|
652 |
-
|
653 |
-
)
|
654 |
-
logger.info(
|
655 |
-
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
|
656 |
-
)
|
657 |
logger.info(f" Total optimization steps = {total_train_steps}")
|
658 |
|
659 |
train_time = 0
|
|
|
660 |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
661 |
for epoch in epochs:
|
662 |
# ======================== Training ================================
|
@@ -664,72 +581,70 @@ def main():
|
|
664 |
|
665 |
# Create sampling rng
|
666 |
rng, input_rng = jax.random.split(rng)
|
667 |
-
train_metrics = []
|
668 |
|
669 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
670 |
-
train_loader = data_loader(
|
671 |
-
input_rng, train_dataset, train_batch_size, shuffle=True
|
672 |
-
)
|
673 |
steps_per_epoch = len(train_dataset) // train_batch_size
|
674 |
# train
|
675 |
-
for
|
676 |
-
range(steps_per_epoch), desc="Training...", position=1, leave=False
|
677 |
-
):
|
678 |
batch = next(train_loader)
|
679 |
state, train_metric = p_train_step(state, batch)
|
680 |
train_metrics.append(train_metric)
|
681 |
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
|
|
|
|
|
|
733 |
|
734 |
|
735 |
if __name__ == "__main__":
|
|
|
31 |
from typing import Callable, Optional
|
32 |
|
33 |
import datasets
|
34 |
+
from datasets import Dataset, load_dataset
|
35 |
+
from tqdm import tqdm
|
36 |
+
|
37 |
import jax
|
38 |
import jax.numpy as jnp
|
39 |
import optax
|
40 |
import transformers
|
41 |
+
import wandb
|
42 |
from flax import jax_utils, traverse_util
|
43 |
from flax.jax_utils import unreplicate
|
44 |
from flax.training import train_state
|
45 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
|
|
46 |
from transformers import (
|
47 |
CONFIG_MAPPING,
|
48 |
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
|
55 |
)
|
56 |
from transformers.testing_utils import CaptureLogger
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
|
61 |
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
62 |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
77 |
)
|
78 |
model_type: Optional[str] = field(
|
79 |
default=None,
|
80 |
+
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
|
|
|
|
|
|
81 |
)
|
82 |
config_name: Optional[str] = field(
|
83 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
|
|
|
|
|
84 |
)
|
85 |
tokenizer_name: Optional[str] = field(
|
86 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
|
|
|
|
|
87 |
)
|
88 |
cache_dir: Optional[str] = field(
|
89 |
+
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
|
|
|
|
|
|
90 |
)
|
91 |
use_fast_tokenizer: bool = field(
|
92 |
default=True,
|
93 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
|
|
|
94 |
)
|
95 |
dtype: Optional[str] = field(
|
96 |
default="float32",
|
|
|
107 |
"""
|
108 |
|
109 |
dataset_name: Optional[str] = field(
|
110 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
|
|
|
|
|
111 |
)
|
112 |
dataset_config_name: Optional[str] = field(
|
113 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
)
|
115 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
116 |
validation_file: Optional[str] = field(
|
117 |
default=None,
|
118 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
|
|
|
|
119 |
)
|
120 |
max_train_samples: Optional[int] = field(
|
121 |
default=None,
|
|
|
132 |
},
|
133 |
)
|
134 |
overwrite_cache: bool = field(
|
135 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
|
136 |
)
|
137 |
validation_split_percentage: Optional[int] = field(
|
138 |
default=5,
|
|
|
149 |
},
|
150 |
)
|
151 |
overwrite_cache: bool = field(
|
152 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
|
153 |
)
|
154 |
preprocessing_num_workers: Optional[int] = field(
|
155 |
default=None,
|
|
|
157 |
)
|
158 |
|
159 |
def __post_init__(self):
|
160 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
161 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
else:
|
163 |
if self.train_file is not None:
|
164 |
extension = self.train_file.split(".")[-1]
|
165 |
+
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
|
|
|
|
|
|
|
|
166 |
if self.validation_file is not None:
|
167 |
extension = self.validation_file.split(".")[-1]
|
168 |
+
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
|
|
|
|
|
|
|
|
169 |
|
170 |
|
171 |
class TrainState(train_state.TrainState):
|
172 |
dropout_rng: jnp.ndarray
|
173 |
|
174 |
def replicate(self):
|
175 |
+
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
|
|
|
|
|
176 |
|
177 |
|
178 |
+
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
|
|
|
|
|
179 |
"""
|
180 |
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
181 |
Shuffle batches if `shuffle` is `True`.
|
|
|
199 |
yield batch
|
200 |
|
201 |
|
202 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
203 |
summary_writer.scalar("train_time", train_time, step)
|
204 |
|
205 |
train_metrics = get_metrics(train_metrics)
|
|
|
208 |
for i, val in enumerate(vals):
|
209 |
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
210 |
|
211 |
+
|
212 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
213 |
for metric_name, value in eval_metrics.items():
|
214 |
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
215 |
|
216 |
|
217 |
def create_learning_rate_fn(
|
218 |
+
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
|
|
|
|
|
|
|
|
219 |
) -> Callable[[int], jnp.array]:
|
220 |
"""Returns a linear warmup, linear_decay learning rate function."""
|
221 |
steps_per_epoch = train_ds_size // train_batch_size
|
222 |
num_train_steps = steps_per_epoch * num_train_epochs
|
223 |
+
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
|
|
|
|
224 |
decay_fn = optax.linear_schedule(
|
225 |
+
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
|
|
|
|
|
|
|
|
|
|
226 |
)
|
227 |
+
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
228 |
return schedule_fn
|
229 |
|
230 |
|
|
|
233 |
# or by passing the --help flag to this script.
|
234 |
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
235 |
|
236 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
|
|
|
237 |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
238 |
# If we pass only one argument to the script and it's the path to a json file,
|
239 |
# let's parse it to get our arguments.
|
240 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
|
|
|
241 |
else:
|
242 |
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
243 |
|
|
|
279 |
#
|
280 |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
281 |
# download the dataset.
|
|
|
282 |
if data_args.dataset_name is not None:
|
283 |
# Downloading and loading a dataset from the hub.
|
284 |
dataset = load_dataset(
|
285 |
+
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
|
|
|
|
|
|
|
286 |
)
|
287 |
|
288 |
if "validation" not in dataset.keys():
|
|
|
307 |
extension = data_args.train_file.split(".")[-1]
|
308 |
if extension == "txt":
|
309 |
extension = "text"
|
310 |
+
dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
|
|
|
|
|
|
|
311 |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
312 |
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
313 |
|
|
|
317 |
# The .from_pretrained methods guarantee that only one local process can concurrently
|
318 |
# download model & vocab.
|
319 |
if model_args.config_name:
|
320 |
+
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
|
|
|
|
|
321 |
elif model_args.model_name_or_path:
|
322 |
+
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
|
|
|
|
|
323 |
else:
|
324 |
config = CONFIG_MAPPING[model_args.model_type]()
|
325 |
logger.warning("You are instantiating a new config instance from scratch.")
|
326 |
|
327 |
if model_args.tokenizer_name:
|
328 |
tokenizer = AutoTokenizer.from_pretrained(
|
329 |
+
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
|
|
|
|
330 |
)
|
331 |
elif model_args.model_name_or_path:
|
332 |
tokenizer = AutoTokenizer.from_pretrained(
|
333 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
|
|
|
|
334 |
)
|
335 |
else:
|
336 |
raise ValueError(
|
|
|
340 |
|
341 |
if model_args.model_name_or_path:
|
342 |
model = FlaxAutoModelForCausalLM.from_pretrained(
|
343 |
+
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
|
|
|
|
|
|
344 |
)
|
345 |
else:
|
346 |
model = FlaxAutoModelForCausalLM.from_config(
|
|
|
356 |
text_column_name = "text" if "text" in column_names else column_names[0]
|
357 |
|
358 |
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
|
359 |
+
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
|
|
|
|
|
360 |
|
361 |
def tokenize_function(examples):
|
362 |
with CaptureLogger(tok_logger) as cl:
|
|
|
399 |
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
400 |
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
401 |
# customize this part to your needs.
|
402 |
+
if total_length >= block_size:
|
403 |
+
total_length = (total_length // block_size) * block_size
|
404 |
# Split by chunks of max_len.
|
405 |
result = {
|
406 |
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
|
|
438 |
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
439 |
|
440 |
# Enable tensorboard only on the master node
|
441 |
+
has_tensorboard = is_tensorboard_available()
|
442 |
if has_tensorboard and jax.process_index() == 0:
|
443 |
+
wandb.init(
|
444 |
+
entity='abinayam',
|
445 |
+
project='hf-flax-gpt-2-tamil',
|
446 |
+
sync_tensorboard=True
|
447 |
+
)
|
448 |
+
|
449 |
+
wandb.config.update(training_args) # optional, log your configs
|
450 |
+
wandb.config.update(model_args) # optional, log your configs
|
451 |
+
wandb.config.update(data_args) # optional, log your configs
|
452 |
+
|
453 |
+
try:
|
454 |
+
from flax.metrics.tensorboard import SummaryWriter
|
455 |
+
|
456 |
+
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
|
457 |
+
except ImportError as ie:
|
458 |
+
has_tensorboard = False
|
459 |
+
logger.warning(
|
460 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
logger.warning(
|
464 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
465 |
+
"Please run pip install tensorboard to enable."
|
466 |
+
)
|
467 |
|
468 |
# Initialize our training
|
469 |
rng = jax.random.PRNGKey(training_args.seed)
|
|
|
471 |
|
472 |
# Store some constant
|
473 |
num_epochs = int(training_args.num_train_epochs)
|
474 |
+
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
475 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
|
|
|
|
|
|
|
|
476 |
steps_per_epoch = len(train_dataset) // train_batch_size
|
477 |
total_train_steps = steps_per_epoch * num_epochs
|
478 |
|
|
|
495 |
def decay_mask_fn(params):
|
496 |
flat_params = traverse_util.flatten_dict(params)
|
497 |
flat_mask = {
|
498 |
+
path: (path[-1] != "bias" and path[-2:] not in [("ln_1", "scale"), ("ln_2", "scale"), ("ln_f", "scale")])
|
|
|
|
|
|
|
|
|
499 |
for path in flat_params
|
500 |
}
|
501 |
return traverse_util.unflatten_dict(flat_mask)
|
502 |
|
503 |
# create adam optimizer
|
504 |
+
if training_args.adafactor:
|
505 |
+
# We use the default parameters here to initialize adafactor,
|
506 |
+
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
507 |
+
optimizer = optax.adafactor(
|
508 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
optimizer = optax.adamw(
|
512 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
513 |
+
b1=training_args.adam_beta1,
|
514 |
+
b2=training_args.adam_beta2,
|
515 |
+
eps=training_args.adam_epsilon,
|
516 |
+
weight_decay=training_args.weight_decay,
|
517 |
+
mask=decay_mask_fn,
|
518 |
+
)
|
519 |
|
520 |
# Setup train state
|
521 |
+
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
def loss_fn(logits, labels):
|
524 |
shift_logits = logits[..., :-1, :]
|
525 |
shift_labels = labels[..., 1:]
|
526 |
+
loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1]))
|
|
|
|
|
527 |
return loss.mean()
|
528 |
|
529 |
# Define gradient update step fn
|
|
|
532 |
|
533 |
def compute_loss(params):
|
534 |
labels = batch.pop("labels")
|
535 |
+
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
|
|
|
|
536 |
loss = loss_fn(logits, labels)
|
537 |
return loss
|
538 |
|
|
|
542 |
|
543 |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
544 |
|
545 |
+
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
|
|
|
|
|
|
|
546 |
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
547 |
|
548 |
return new_state, metrics
|
|
|
568 |
logger.info("***** Running training *****")
|
569 |
logger.info(f" Num examples = {len(train_dataset)}")
|
570 |
logger.info(f" Num Epochs = {num_epochs}")
|
571 |
+
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
|
572 |
+
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
|
|
|
|
|
|
|
|
|
573 |
logger.info(f" Total optimization steps = {total_train_steps}")
|
574 |
|
575 |
train_time = 0
|
576 |
+
train_metrics = []
|
577 |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
578 |
for epoch in epochs:
|
579 |
# ======================== Training ================================
|
|
|
581 |
|
582 |
# Create sampling rng
|
583 |
rng, input_rng = jax.random.split(rng)
|
|
|
584 |
|
585 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
586 |
+
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
|
|
|
|
|
587 |
steps_per_epoch = len(train_dataset) // train_batch_size
|
588 |
# train
|
589 |
+
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
|
|
|
|
|
590 |
batch = next(train_loader)
|
591 |
state, train_metric = p_train_step(state, batch)
|
592 |
train_metrics.append(train_metric)
|
593 |
|
594 |
+
cur_step = epoch * (len(train_dataset) // train_batch_size) + step
|
595 |
+
|
596 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
597 |
+
# Save metrics
|
598 |
+
train_metric = unreplicate(train_metric)
|
599 |
+
train_time += time.time() - train_start
|
600 |
+
if has_tensorboard and jax.process_index() == 0:
|
601 |
+
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
|
602 |
+
|
603 |
+
epochs.write(
|
604 |
+
f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
|
605 |
+
)
|
606 |
+
|
607 |
+
train_metrics = []
|
608 |
+
|
609 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
610 |
+
# ======================== Evaluating ==============================
|
611 |
+
eval_metrics = []
|
612 |
+
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
|
613 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
614 |
+
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
|
615 |
+
# Model forward
|
616 |
+
batch = next(eval_loader)
|
617 |
+
metrics = p_eval_step(state.params, batch)
|
618 |
+
eval_metrics.append(metrics)
|
619 |
+
|
620 |
+
# normalize eval metrics
|
621 |
+
eval_metrics = get_metrics(eval_metrics)
|
622 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
623 |
+
|
624 |
+
try:
|
625 |
+
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
|
626 |
+
except OverflowError:
|
627 |
+
eval_metrics["perplexity"] = float("inf")
|
628 |
+
|
629 |
+
# Print metrics and update progress bar
|
630 |
+
desc = f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})"
|
631 |
+
epochs.write(desc)
|
632 |
+
epochs.desc = desc
|
633 |
+
|
634 |
+
# Save metrics
|
635 |
+
if has_tensorboard and jax.process_index() == 0:
|
636 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
637 |
+
|
638 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
639 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
640 |
+
if jax.process_index() == 0:
|
641 |
+
params = jax.device_get(unreplicate(state.params))
|
642 |
+
model.save_pretrained(
|
643 |
+
training_args.output_dir,
|
644 |
+
params=params,
|
645 |
+
push_to_hub=training_args.push_to_hub,
|
646 |
+
commit_message=f"Saving weights and logs of step {cur_step}",
|
647 |
+
)
|
648 |
|
649 |
|
650 |
if __name__ == "__main__":
|
src/train_tokenizer.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from datasets import load_dataset
|
2 |
from tokenizers import ByteLevelBPETokenizer # Tokenizer, normalizers, trainers
|
3 |
|
4 |
-
model_dir = "
|
5 |
|
6 |
# load dataset
|
7 |
dataset = load_dataset("oscar", "unshuffled_deduplicated_ta", split="train")
|
|
|
1 |
from datasets import load_dataset
|
2 |
from tokenizers import ByteLevelBPETokenizer # Tokenizer, normalizers, trainers
|
3 |
|
4 |
+
model_dir = "../gpt-2-tamil" # ${MODEL_DIR}
|
5 |
|
6 |
# load dataset
|
7 |
dataset = load_dataset("oscar", "unshuffled_deduplicated_ta", split="train")
|