|
import argparse |
|
import torch |
|
from transformers import CLIPConfig, CLIPModel |
|
from transformers.models.clip.convert_clip_original_pytorch_to_hf import copy_text_model_and_projection, copy_vison_model_and_projection |
|
from clip.clip import build_model |
|
|
|
@torch.no_grad() |
|
def convert_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None): |
|
""" |
|
Copy/paste/tweak model's weights to transformers design. Adapted from |
|
https://github.com/huggingface/transformers/blob/3723329d014a7b144863e597ea4fe6de5e6a8279/src/transformers/models/clip/convert_clip_original_pytorch_to_hf.py#LL108C1-L138C55 |
|
""" |
|
if config_path is not None: |
|
config = CLIPConfig.from_pretrained(config_path) |
|
else: |
|
config = CLIPConfig(projection_dim=512, text_config={}, vision_config={}) |
|
|
|
hf_model = CLIPModel(config).eval() |
|
|
|
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu") |
|
pt_model = build_model(checkpoint["state_dict"]) |
|
pt_model = pt_model.float() |
|
pt_model = pt_model.eval() |
|
|
|
copy_text_model_and_projection(hf_model, pt_model) |
|
copy_vison_model_and_projection(hf_model, pt_model) |
|
hf_model.logit_scale = pt_model.logit_scale |
|
|
|
input_ids = torch.arange(0, 77).unsqueeze(0) |
|
pixel_values = torch.randn(1, 3, 224, 224) |
|
|
|
hf_outputs = hf_model(input_ids=input_ids, pixel_values=pixel_values, return_dict=True) |
|
hf_logits_per_image = hf_outputs.logits_per_image |
|
hf_logits_per_text = hf_outputs.logits_per_text |
|
pt_logits_per_image, pt_logits_per_text = pt_model(pixel_values, input_ids) |
|
|
|
assert torch.allclose(hf_logits_per_image, pt_logits_per_image, atol=1e-3) |
|
assert torch.allclose(hf_logits_per_text, pt_logits_per_text, atol=1e-3) |
|
|
|
hf_model.save_pretrained(pytorch_dump_folder_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") |
|
parser.add_argument("--checkpoint_path", default="PubMedCLIP_ViT32.pth", type=str, help="Path to PubMedCLIP ViT32 checkpoint") |
|
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") |
|
args = parser.parse_args() |
|
convert_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) |
|
|