ViPE-M-CTX7 / README.md
fittar's picture
Update README.md
0ae2e56
|
raw
history blame
5.54 kB
metadata
language:
  - en
pipeline_tag: text2text-generation
inference: false
license: mit

ViPE-M-CTX7

ViPE: Visualize Pretty-much Everything, is the first automated model for translating any arbitrary piece of text into a visualizable prompt. It helps any text-to-image model in figurative or non-lexical language visualizations.

Model Description

Model Sources

Down Stream Applications

ViPE provides a robust backbone for many practical applications such as music video generation and creative writing.

Direct Use

You can directly use the model to generate detailed prompts for any arbitrary text.

from transformers import GPT2LMHeadModel, GPT2Tokenizer


def generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1):
    #mark the text with special tokens
    text=[tokenizer.eos_token +  i + tokenizer.eos_token for i in text]
    batch=tokenizer(text, padding=True, return_tensors="pt")

    input_ids = batch["input_ids"].to(device)
    attention_mask = batch["attention_mask"].to(device)

    #how many new tokens to generate at max
    max_prompt_length=50

    generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature)
    #return only the generated prompts
    pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True)

    return pred_caps

device='cpu'
model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7')
model.to(device)

#ViPE-M's tokenizer is identical to that of GPT2-Medium
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
tokenizer.pad_token = tokenizer.eos_token

# A list of abstract/figurative or any arbitrary combinations of keywords
texts=['lalala', 'I wanna start learning', 'free your mind; you will see the other side of life', 'brave; fantasy']

prompts=generate(texts,model,tokenizer,do_sample=True,device=device)
for t,p in zip(texts,prompts):
    print('{} --> {}'.format(t,p))

lalala -->  A group of people chanting "la la la" around a bonfire on a beach at night
I wanna start learning -->  A child sitting in a library surrounded by books, excitedly flipping through pages of a book
free your mind; you will see the other side of life -->  An astronaut floating in space with a sense of floating weightlessness, looking down towards the earth
brave; fantasy -->  A brave knight with shining armor fighting a fierce dragon in a misty forest

Recommendations

You can use either a comma or a semicolon to combine multiple keywords. for example ['dark, fantasy, brave'] or ['This is gonna be the best day of my life; do you agree?']. However, a semicolon draws a stronger boundary between the keywords and encourages the model to transfer the last keyword in a given context (previous keywords).

Training Details

Training Data

[More Information Needed]

Training Procedure

Evaluation

Citation

If you find ViPE useful, please cite our paper.

@inproceedings{shahmohammadi2023vipe,
    title = "ViPE: Visualise Pretty-much Everything",
    author = "Hassan Shahmohammadi and Adhiraj Ghosh and Hendrik P. A. Lensch",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2310.10543",
    eprint={2310.10543},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
    doi = "",
    pages = ""
}

Model Card Contact

Hassan Shahmohammadi