ast-finetuned-gtzan / README.md
fisheggg's picture
End of training
0745190
|
raw
history blame
2.98 kB
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.9
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-finetuned-gtzan
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3724
- Accuracy: 0.9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8858 | 1.0 | 112 | 0.5691 | 0.8 |
| 0.5797 | 2.0 | 225 | 0.6960 | 0.74 |
| 0.7178 | 3.0 | 337 | 0.4546 | 0.85 |
| 0.0858 | 4.0 | 450 | 0.4605 | 0.86 |
| 0.0048 | 5.0 | 562 | 0.6531 | 0.86 |
| 0.0218 | 6.0 | 675 | 0.3650 | 0.91 |
| 0.0831 | 7.0 | 787 | 0.4631 | 0.88 |
| 0.0002 | 8.0 | 900 | 0.4604 | 0.87 |
| 0.1109 | 9.0 | 1012 | 0.4126 | 0.91 |
| 0.0003 | 10.0 | 1125 | 0.3681 | 0.92 |
| 0.0001 | 11.0 | 1237 | 0.3977 | 0.9 |
| 0.0001 | 12.0 | 1350 | 0.3466 | 0.91 |
| 0.0001 | 13.0 | 1462 | 0.3682 | 0.91 |
| 0.0001 | 14.0 | 1575 | 0.3695 | 0.9 |
| 0.0 | 15.0 | 1687 | 0.3664 | 0.91 |
| 0.0001 | 16.0 | 1800 | 0.3714 | 0.9 |
| 0.0 | 17.0 | 1912 | 0.3718 | 0.9 |
| 0.0001 | 18.0 | 2025 | 0.3730 | 0.9 |
| 0.0001 | 19.0 | 2137 | 0.3717 | 0.9 |
| 0.0 | 19.91 | 2240 | 0.3724 | 0.9 |
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3