firqaaa's picture
Add SetFit model
28dd1ff verified
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: ketika Leguizamo akhirnya memasang karakter yang menjengkelkan di akhir film.
- text: ini adalah perjalanan yang menawan dan sering kali memberi kesan.
- text: hanya sedikit film yang menangkap dengan sempurna harapan dan impian anak-anak
lelaki di lapangan bisbol serta para lelaki dewasa yang duduk di tribun.
- text: holden caulfield melakukannya dengan lebih baik.
- text: tapi jika diambil sebagai one-shot yang penuh gaya dan energik, ratu terkutuk
ini tidak bisa dikatakan payah.
pipeline_tag: text-classification
inference: true
base_model: firqaaa/indo-sentence-bert-base
model-index:
- name: SetFit with firqaaa/indo-sentence-bert-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8171334431630972
name: Accuracy
---
# SetFit with firqaaa/indo-sentence-bert-base
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:--------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| positif | <ul><li>'secara implisit mengakui dan merayakan kelicikan dan khayalan diri yang luar biasa dari sebagian besar pebisnis Amerika ini, dan oleh karena itu, dokumen ini mungkin merupakan dokumen Hollywood yang paling jujur \u200b\u200bdan aneh dari semuanya.'</li><li>'sebuah potret menarik dari para seniman tanpa kompromi yang mencoba menciptakan sesuatu yang orisinal dengan latar belakang industri musik korporat yang tampaknya hanya peduli pada keuntungan.'</li><li>'mengerikan dalam potret obyektif Amerika abad kedua puluh satu yang suram dan hilang.'</li></ul> |
| negatif | <ul><li>'dengan hari-hari anjing di bulan Agustus yang akan datang, anggaplah film anjing ini setara dengan sinematik dengan kelembapan tinggi.'</li><li>'itu kelam dan mudah ditebak, dan tidak banyak yang bisa tertawa.'</li><li>'pencapaian film yang paling mustahil?'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8171 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("firqaaa/indo-setfit-bert-base-p1")
# Run inference
preds = model("holden caulfield melakukannya dengan lebih baik.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 16.073 | 45 |
| Label | Training Sample Count |
|:--------|:----------------------|
| negatif | 500 |
| positif | 500 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:---------:|:-------------:|:---------------:|
| 0.0001 | 1 | 0.3943 | - |
| 0.0032 | 50 | 0.3398 | - |
| 0.0064 | 100 | 0.2628 | - |
| 0.0096 | 150 | 0.2842 | - |
| 0.0128 | 200 | 0.2317 | - |
| 0.0160 | 250 | 0.2703 | - |
| 0.0192 | 300 | 0.2272 | - |
| 0.0224 | 350 | 0.2496 | - |
| 0.0255 | 400 | 0.2076 | - |
| 0.0287 | 450 | 0.207 | - |
| 0.0319 | 500 | 0.232 | - |
| 0.0351 | 550 | 0.1439 | - |
| 0.0383 | 600 | 0.1578 | - |
| 0.0415 | 650 | 0.0821 | - |
| 0.0447 | 700 | 0.0628 | - |
| 0.0479 | 750 | 0.0315 | - |
| 0.0511 | 800 | 0.0089 | - |
| 0.0543 | 850 | 0.0106 | - |
| 0.0575 | 900 | 0.0026 | - |
| 0.0607 | 950 | 0.0025 | - |
| 0.0639 | 1000 | 0.0028 | - |
| 0.0671 | 1050 | 0.0093 | - |
| 0.0703 | 1100 | 0.0008 | - |
| 0.0734 | 1150 | 0.0008 | - |
| 0.0766 | 1200 | 0.0003 | - |
| 0.0798 | 1250 | 0.0006 | - |
| 0.0830 | 1300 | 0.0005 | - |
| 0.0862 | 1350 | 0.0005 | - |
| 0.0894 | 1400 | 0.0002 | - |
| 0.0926 | 1450 | 0.0003 | - |
| 0.0958 | 1500 | 0.0003 | - |
| 0.0990 | 1550 | 0.0003 | - |
| 0.1022 | 1600 | 0.0002 | - |
| 0.1054 | 1650 | 0.0002 | - |
| 0.1086 | 1700 | 0.0001 | - |
| 0.1118 | 1750 | 0.0002 | - |
| 0.1150 | 1800 | 0.0001 | - |
| 0.1182 | 1850 | 0.0001 | - |
| 0.1214 | 1900 | 0.0001 | - |
| 0.1245 | 1950 | 0.0001 | - |
| 0.1277 | 2000 | 0.0001 | - |
| 0.1309 | 2050 | 0.0001 | - |
| 0.1341 | 2100 | 0.0001 | - |
| 0.1373 | 2150 | 0.0001 | - |
| 0.1405 | 2200 | 0.0001 | - |
| 0.1437 | 2250 | 0.0001 | - |
| 0.1469 | 2300 | 0.0001 | - |
| 0.1501 | 2350 | 0.0001 | - |
| 0.1533 | 2400 | 0.0001 | - |
| 0.1565 | 2450 | 0.0002 | - |
| 0.1597 | 2500 | 0.0001 | - |
| 0.1629 | 2550 | 0.0001 | - |
| 0.1661 | 2600 | 0.0134 | - |
| 0.1693 | 2650 | 0.0001 | - |
| 0.1724 | 2700 | 0.0001 | - |
| 0.1756 | 2750 | 0.0016 | - |
| 0.1788 | 2800 | 0.0001 | - |
| 0.1820 | 2850 | 0.0001 | - |
| 0.1852 | 2900 | 0.0002 | - |
| 0.1884 | 2950 | 0.0001 | - |
| 0.1916 | 3000 | 0.0066 | - |
| 0.1948 | 3050 | 0.0001 | - |
| 0.1980 | 3100 | 0.0001 | - |
| 0.2012 | 3150 | 0.0005 | - |
| 0.2044 | 3200 | 0.0001 | - |
| 0.2076 | 3250 | 0.0001 | - |
| 0.2108 | 3300 | 0.0001 | - |
| 0.2140 | 3350 | 0.0001 | - |
| 0.2172 | 3400 | 0.0001 | - |
| 0.2203 | 3450 | 0.0 | - |
| 0.2235 | 3500 | 0.0001 | - |
| 0.2267 | 3550 | 0.0 | - |
| 0.2299 | 3600 | 0.0 | - |
| 0.2331 | 3650 | 0.021 | - |
| 0.2363 | 3700 | 0.0001 | - |
| 0.2395 | 3750 | 0.0 | - |
| 0.2427 | 3800 | 0.0 | - |
| 0.2459 | 3850 | 0.0 | - |
| 0.2491 | 3900 | 0.0 | - |
| 0.2523 | 3950 | 0.0 | - |
| 0.2555 | 4000 | 0.0 | - |
| 0.2587 | 4050 | 0.0001 | - |
| 0.2619 | 4100 | 0.0 | - |
| 0.2651 | 4150 | 0.0 | - |
| 0.2683 | 4200 | 0.0016 | - |
| 0.2714 | 4250 | 0.0 | - |
| 0.2746 | 4300 | 0.001 | - |
| 0.2778 | 4350 | 0.0001 | - |
| 0.2810 | 4400 | 0.0002 | - |
| 0.2842 | 4450 | 0.0 | - |
| 0.2874 | 4500 | 0.0001 | - |
| 0.2906 | 4550 | 0.0001 | - |
| 0.2938 | 4600 | 0.0002 | - |
| 0.2970 | 4650 | 0.0 | - |
| 0.3002 | 4700 | 0.0305 | - |
| 0.3034 | 4750 | 0.0 | - |
| 0.3066 | 4800 | 0.0 | - |
| 0.3098 | 4850 | 0.0 | - |
| 0.3130 | 4900 | 0.0 | - |
| 0.3162 | 4950 | 0.0 | - |
| 0.3193 | 5000 | 0.0 | - |
| 0.3225 | 5050 | 0.0 | - |
| 0.3257 | 5100 | 0.0 | - |
| 0.3289 | 5150 | 0.0 | - |
| 0.3321 | 5200 | 0.0 | - |
| 0.3353 | 5250 | 0.0 | - |
| 0.3385 | 5300 | 0.0 | - |
| 0.3417 | 5350 | 0.0 | - |
| 0.3449 | 5400 | 0.0 | - |
| 0.3481 | 5450 | 0.0 | - |
| 0.3513 | 5500 | 0.0 | - |
| 0.3545 | 5550 | 0.0 | - |
| 0.3577 | 5600 | 0.0 | - |
| 0.3609 | 5650 | 0.0 | - |
| 0.3641 | 5700 | 0.0 | - |
| 0.3672 | 5750 | 0.0 | - |
| 0.3704 | 5800 | 0.0 | - |
| 0.3736 | 5850 | 0.0001 | - |
| 0.3768 | 5900 | 0.0 | - |
| 0.3800 | 5950 | 0.0 | - |
| 0.3832 | 6000 | 0.0 | - |
| 0.3864 | 6050 | 0.0 | - |
| 0.3896 | 6100 | 0.0 | - |
| 0.3928 | 6150 | 0.0001 | - |
| 0.3960 | 6200 | 0.0002 | - |
| 0.3992 | 6250 | 0.0 | - |
| 0.4024 | 6300 | 0.0 | - |
| 0.4056 | 6350 | 0.0 | - |
| 0.4088 | 6400 | 0.0 | - |
| 0.4120 | 6450 | 0.0 | - |
| 0.4151 | 6500 | 0.0 | - |
| 0.4183 | 6550 | 0.0 | - |
| 0.4215 | 6600 | 0.0 | - |
| 0.4247 | 6650 | 0.0 | - |
| 0.4279 | 6700 | 0.0 | - |
| 0.4311 | 6750 | 0.0 | - |
| 0.4343 | 6800 | 0.0 | - |
| 0.4375 | 6850 | 0.0 | - |
| 0.4407 | 6900 | 0.0 | - |
| 0.4439 | 6950 | 0.0 | - |
| 0.4471 | 7000 | 0.0 | - |
| 0.4503 | 7050 | 0.0 | - |
| 0.4535 | 7100 | 0.0 | - |
| 0.4567 | 7150 | 0.0 | - |
| 0.4599 | 7200 | 0.0 | - |
| 0.4631 | 7250 | 0.0 | - |
| 0.4662 | 7300 | 0.0 | - |
| 0.4694 | 7350 | 0.0 | - |
| 0.4726 | 7400 | 0.0 | - |
| 0.4758 | 7450 | 0.0 | - |
| 0.4790 | 7500 | 0.0 | - |
| 0.4822 | 7550 | 0.0 | - |
| 0.4854 | 7600 | 0.0 | - |
| 0.4886 | 7650 | 0.0 | - |
| 0.4918 | 7700 | 0.0 | - |
| 0.4950 | 7750 | 0.0 | - |
| 0.4982 | 7800 | 0.0 | - |
| 0.5014 | 7850 | 0.0 | - |
| 0.5046 | 7900 | 0.0 | - |
| 0.5078 | 7950 | 0.0 | - |
| 0.5110 | 8000 | 0.0 | - |
| 0.5141 | 8050 | 0.0 | - |
| 0.5173 | 8100 | 0.0 | - |
| 0.5205 | 8150 | 0.0 | - |
| 0.5237 | 8200 | 0.0 | - |
| 0.5269 | 8250 | 0.0 | - |
| 0.5301 | 8300 | 0.0 | - |
| 0.5333 | 8350 | 0.0 | - |
| 0.5365 | 8400 | 0.0 | - |
| 0.5397 | 8450 | 0.0 | - |
| 0.5429 | 8500 | 0.0 | - |
| 0.5461 | 8550 | 0.0 | - |
| 0.5493 | 8600 | 0.0 | - |
| 0.5525 | 8650 | 0.0 | - |
| 0.5557 | 8700 | 0.0 | - |
| 0.5589 | 8750 | 0.0 | - |
| 0.5620 | 8800 | 0.0 | - |
| 0.5652 | 8850 | 0.0 | - |
| 0.5684 | 8900 | 0.0 | - |
| 0.5716 | 8950 | 0.0 | - |
| 0.5748 | 9000 | 0.0 | - |
| 0.5780 | 9050 | 0.0 | - |
| 0.5812 | 9100 | 0.0 | - |
| 0.5844 | 9150 | 0.0 | - |
| 0.5876 | 9200 | 0.0 | - |
| 0.5908 | 9250 | 0.0 | - |
| 0.5940 | 9300 | 0.0 | - |
| 0.5972 | 9350 | 0.0 | - |
| 0.6004 | 9400 | 0.0 | - |
| 0.6036 | 9450 | 0.0 | - |
| 0.6068 | 9500 | 0.0 | - |
| 0.6100 | 9550 | 0.0 | - |
| 0.6131 | 9600 | 0.0 | - |
| 0.6163 | 9650 | 0.0 | - |
| 0.6195 | 9700 | 0.0 | - |
| 0.6227 | 9750 | 0.0 | - |
| 0.6259 | 9800 | 0.0 | - |
| 0.6291 | 9850 | 0.0 | - |
| 0.6323 | 9900 | 0.0 | - |
| 0.6355 | 9950 | 0.0 | - |
| 0.6387 | 10000 | 0.0 | - |
| 0.6419 | 10050 | 0.0 | - |
| 0.6451 | 10100 | 0.0 | - |
| 0.6483 | 10150 | 0.0 | - |
| 0.6515 | 10200 | 0.0 | - |
| 0.6547 | 10250 | 0.0 | - |
| 0.6579 | 10300 | 0.0 | - |
| 0.6610 | 10350 | 0.0 | - |
| 0.6642 | 10400 | 0.0 | - |
| 0.6674 | 10450 | 0.0 | - |
| 0.6706 | 10500 | 0.0 | - |
| 0.6738 | 10550 | 0.0 | - |
| 0.6770 | 10600 | 0.0 | - |
| 0.6802 | 10650 | 0.0 | - |
| 0.6834 | 10700 | 0.0 | - |
| 0.6866 | 10750 | 0.0 | - |
| 0.6898 | 10800 | 0.0 | - |
| 0.6930 | 10850 | 0.0 | - |
| 0.6962 | 10900 | 0.0 | - |
| 0.6994 | 10950 | 0.0 | - |
| 0.7026 | 11000 | 0.0 | - |
| 0.7058 | 11050 | 0.0 | - |
| 0.7089 | 11100 | 0.0 | - |
| 0.7121 | 11150 | 0.0 | - |
| 0.7153 | 11200 | 0.0 | - |
| 0.7185 | 11250 | 0.0 | - |
| 0.7217 | 11300 | 0.0 | - |
| 0.7249 | 11350 | 0.0 | - |
| 0.7281 | 11400 | 0.0 | - |
| 0.7313 | 11450 | 0.0 | - |
| 0.7345 | 11500 | 0.0 | - |
| 0.7377 | 11550 | 0.0 | - |
| 0.7409 | 11600 | 0.0 | - |
| 0.7441 | 11650 | 0.0 | - |
| 0.7473 | 11700 | 0.0 | - |
| 0.7505 | 11750 | 0.0 | - |
| 0.7537 | 11800 | 0.0 | - |
| 0.7568 | 11850 | 0.0 | - |
| 0.7600 | 11900 | 0.0 | - |
| 0.7632 | 11950 | 0.0 | - |
| 0.7664 | 12000 | 0.0 | - |
| 0.7696 | 12050 | 0.0 | - |
| 0.7728 | 12100 | 0.0 | - |
| 0.7760 | 12150 | 0.0 | - |
| 0.7792 | 12200 | 0.0 | - |
| 0.7824 | 12250 | 0.0 | - |
| 0.7856 | 12300 | 0.0 | - |
| 0.7888 | 12350 | 0.0 | - |
| 0.7920 | 12400 | 0.0 | - |
| 0.7952 | 12450 | 0.0 | - |
| 0.7984 | 12500 | 0.0 | - |
| 0.8016 | 12550 | 0.0 | - |
| 0.8048 | 12600 | 0.0 | - |
| 0.8079 | 12650 | 0.0 | - |
| 0.8111 | 12700 | 0.0 | - |
| 0.8143 | 12750 | 0.0 | - |
| 0.8175 | 12800 | 0.0 | - |
| 0.8207 | 12850 | 0.0 | - |
| 0.8239 | 12900 | 0.0 | - |
| 0.8271 | 12950 | 0.0 | - |
| 0.8303 | 13000 | 0.0 | - |
| 0.8335 | 13050 | 0.0 | - |
| 0.8367 | 13100 | 0.0 | - |
| 0.8399 | 13150 | 0.0 | - |
| 0.8431 | 13200 | 0.0 | - |
| 0.8463 | 13250 | 0.0 | - |
| 0.8495 | 13300 | 0.0 | - |
| 0.8527 | 13350 | 0.0 | - |
| 0.8558 | 13400 | 0.0 | - |
| 0.8590 | 13450 | 0.0 | - |
| 0.8622 | 13500 | 0.0 | - |
| 0.8654 | 13550 | 0.0 | - |
| 0.8686 | 13600 | 0.0 | - |
| 0.8718 | 13650 | 0.0 | - |
| 0.8750 | 13700 | 0.0 | - |
| 0.8782 | 13750 | 0.0 | - |
| 0.8814 | 13800 | 0.0 | - |
| 0.8846 | 13850 | 0.0 | - |
| 0.8878 | 13900 | 0.0 | - |
| 0.8910 | 13950 | 0.0 | - |
| 0.8942 | 14000 | 0.0 | - |
| 0.8974 | 14050 | 0.0 | - |
| 0.9006 | 14100 | 0.0 | - |
| 0.9037 | 14150 | 0.0 | - |
| 0.9069 | 14200 | 0.0 | - |
| 0.9101 | 14250 | 0.0 | - |
| 0.9133 | 14300 | 0.0 | - |
| 0.9165 | 14350 | 0.0 | - |
| 0.9197 | 14400 | 0.0 | - |
| 0.9229 | 14450 | 0.0 | - |
| 0.9261 | 14500 | 0.0 | - |
| 0.9293 | 14550 | 0.0 | - |
| 0.9325 | 14600 | 0.0 | - |
| 0.9357 | 14650 | 0.0 | - |
| 0.9389 | 14700 | 0.0 | - |
| 0.9421 | 14750 | 0.0 | - |
| 0.9453 | 14800 | 0.0 | - |
| 0.9485 | 14850 | 0.0 | - |
| 0.9517 | 14900 | 0.0 | - |
| 0.9548 | 14950 | 0.0 | - |
| 0.9580 | 15000 | 0.0 | - |
| 0.9612 | 15050 | 0.0 | - |
| 0.9644 | 15100 | 0.0 | - |
| 0.9676 | 15150 | 0.0 | - |
| 0.9708 | 15200 | 0.0 | - |
| 0.9740 | 15250 | 0.0 | - |
| 0.9772 | 15300 | 0.0 | - |
| 0.9804 | 15350 | 0.0 | - |
| 0.9836 | 15400 | 0.0 | - |
| 0.9868 | 15450 | 0.0 | - |
| 0.9900 | 15500 | 0.0 | - |
| 0.9932 | 15550 | 0.0 | - |
| 0.9964 | 15600 | 0.0 | - |
| 0.9996 | 15650 | 0.0 | - |
| 1.0 | 15657 | - | 0.2641 |
| 1.0027 | 15700 | 0.0 | - |
| 1.0059 | 15750 | 0.0 | - |
| 1.0091 | 15800 | 0.0 | - |
| 1.0123 | 15850 | 0.0 | - |
| 1.0155 | 15900 | 0.0 | - |
| 1.0187 | 15950 | 0.0 | - |
| 1.0219 | 16000 | 0.0 | - |
| 1.0251 | 16050 | 0.0 | - |
| 1.0283 | 16100 | 0.0 | - |
| 1.0315 | 16150 | 0.0 | - |
| 1.0347 | 16200 | 0.0 | - |
| 1.0379 | 16250 | 0.0 | - |
| 1.0411 | 16300 | 0.0 | - |
| 1.0443 | 16350 | 0.0 | - |
| 1.0475 | 16400 | 0.0 | - |
| 1.0506 | 16450 | 0.0 | - |
| 1.0538 | 16500 | 0.0 | - |
| 1.0570 | 16550 | 0.0 | - |
| 1.0602 | 16600 | 0.0 | - |
| 1.0634 | 16650 | 0.0 | - |
| 1.0666 | 16700 | 0.0 | - |
| 1.0698 | 16750 | 0.0 | - |
| 1.0730 | 16800 | 0.0 | - |
| 1.0762 | 16850 | 0.0 | - |
| 1.0794 | 16900 | 0.0 | - |
| 1.0826 | 16950 | 0.0 | - |
| 1.0858 | 17000 | 0.0 | - |
| 1.0890 | 17050 | 0.0 | - |
| 1.0922 | 17100 | 0.0 | - |
| 1.0954 | 17150 | 0.0 | - |
| 1.0986 | 17200 | 0.0 | - |
| 1.1017 | 17250 | 0.0 | - |
| 1.1049 | 17300 | 0.0 | - |
| 1.1081 | 17350 | 0.0 | - |
| 1.1113 | 17400 | 0.0 | - |
| 1.1145 | 17450 | 0.0 | - |
| 1.1177 | 17500 | 0.0 | - |
| 1.1209 | 17550 | 0.0 | - |
| 1.1241 | 17600 | 0.0 | - |
| 1.1273 | 17650 | 0.0 | - |
| 1.1305 | 17700 | 0.0 | - |
| 1.1337 | 17750 | 0.0 | - |
| 1.1369 | 17800 | 0.0 | - |
| 1.1401 | 17850 | 0.0 | - |
| 1.1433 | 17900 | 0.0 | - |
| 1.1465 | 17950 | 0.0 | - |
| 1.1496 | 18000 | 0.0 | - |
| 1.1528 | 18050 | 0.0 | - |
| 1.1560 | 18100 | 0.0 | - |
| 1.1592 | 18150 | 0.0 | - |
| 1.1624 | 18200 | 0.0 | - |
| 1.1656 | 18250 | 0.0 | - |
| 1.1688 | 18300 | 0.0 | - |
| 1.1720 | 18350 | 0.0 | - |
| 1.1752 | 18400 | 0.0 | - |
| 1.1784 | 18450 | 0.0 | - |
| 1.1816 | 18500 | 0.0 | - |
| 1.1848 | 18550 | 0.0 | - |
| 1.1880 | 18600 | 0.0 | - |
| 1.1912 | 18650 | 0.0 | - |
| 1.1944 | 18700 | 0.0 | - |
| 1.1975 | 18750 | 0.0 | - |
| 1.2007 | 18800 | 0.0 | - |
| 1.2039 | 18850 | 0.0 | - |
| 1.2071 | 18900 | 0.0 | - |
| 1.2103 | 18950 | 0.0 | - |
| 1.2135 | 19000 | 0.0 | - |
| 1.2167 | 19050 | 0.0 | - |
| 1.2199 | 19100 | 0.0 | - |
| 1.2231 | 19150 | 0.0 | - |
| 1.2263 | 19200 | 0.0 | - |
| 1.2295 | 19250 | 0.0 | - |
| 1.2327 | 19300 | 0.0 | - |
| 1.2359 | 19350 | 0.0 | - |
| 1.2391 | 19400 | 0.0 | - |
| 1.2423 | 19450 | 0.0 | - |
| 1.2454 | 19500 | 0.0 | - |
| 1.2486 | 19550 | 0.0 | - |
| 1.2518 | 19600 | 0.0 | - |
| 1.2550 | 19650 | 0.0 | - |
| 1.2582 | 19700 | 0.0 | - |
| 1.2614 | 19750 | 0.0 | - |
| 1.2646 | 19800 | 0.0 | - |
| 1.2678 | 19850 | 0.0 | - |
| 1.2710 | 19900 | 0.0 | - |
| 1.2742 | 19950 | 0.0 | - |
| 1.2774 | 20000 | 0.0 | - |
| 1.2806 | 20050 | 0.0 | - |
| 1.2838 | 20100 | 0.0 | - |
| 1.2870 | 20150 | 0.0 | - |
| 1.2902 | 20200 | 0.0 | - |
| 1.2934 | 20250 | 0.0 | - |
| 1.2965 | 20300 | 0.0 | - |
| 1.2997 | 20350 | 0.0 | - |
| 1.3029 | 20400 | 0.0 | - |
| 1.3061 | 20450 | 0.0 | - |
| 1.3093 | 20500 | 0.0 | - |
| 1.3125 | 20550 | 0.0 | - |
| 1.3157 | 20600 | 0.0 | - |
| 1.3189 | 20650 | 0.0 | - |
| 1.3221 | 20700 | 0.0 | - |
| 1.3253 | 20750 | 0.0 | - |
| 1.3285 | 20800 | 0.0 | - |
| 1.3317 | 20850 | 0.0 | - |
| 1.3349 | 20900 | 0.0 | - |
| 1.3381 | 20950 | 0.0 | - |
| 1.3413 | 21000 | 0.0 | - |
| 1.3444 | 21050 | 0.0 | - |
| 1.3476 | 21100 | 0.0 | - |
| 1.3508 | 21150 | 0.0 | - |
| 1.3540 | 21200 | 0.0 | - |
| 1.3572 | 21250 | 0.0 | - |
| 1.3604 | 21300 | 0.0 | - |
| 1.3636 | 21350 | 0.0 | - |
| 1.3668 | 21400 | 0.0 | - |
| 1.3700 | 21450 | 0.0 | - |
| 1.3732 | 21500 | 0.0 | - |
| 1.3764 | 21550 | 0.0 | - |
| 1.3796 | 21600 | 0.0 | - |
| 1.3828 | 21650 | 0.0 | - |
| 1.3860 | 21700 | 0.0 | - |
| 1.3892 | 21750 | 0.0 | - |
| 1.3923 | 21800 | 0.0 | - |
| 1.3955 | 21850 | 0.0 | - |
| 1.3987 | 21900 | 0.0 | - |
| 1.4019 | 21950 | 0.0 | - |
| 1.4051 | 22000 | 0.0 | - |
| 1.4083 | 22050 | 0.0 | - |
| 1.4115 | 22100 | 0.0 | - |
| 1.4147 | 22150 | 0.0 | - |
| 1.4179 | 22200 | 0.0 | - |
| 1.4211 | 22250 | 0.0 | - |
| 1.4243 | 22300 | 0.0 | - |
| 1.4275 | 22350 | 0.0 | - |
| 1.4307 | 22400 | 0.0 | - |
| 1.4339 | 22450 | 0.0 | - |
| 1.4371 | 22500 | 0.0 | - |
| 1.4403 | 22550 | 0.0 | - |
| 1.4434 | 22600 | 0.0 | - |
| 1.4466 | 22650 | 0.0 | - |
| 1.4498 | 22700 | 0.0 | - |
| 1.4530 | 22750 | 0.0 | - |
| 1.4562 | 22800 | 0.0 | - |
| 1.4594 | 22850 | 0.0 | - |
| 1.4626 | 22900 | 0.0 | - |
| 1.4658 | 22950 | 0.0 | - |
| 1.4690 | 23000 | 0.0 | - |
| 1.4722 | 23050 | 0.0 | - |
| 1.4754 | 23100 | 0.0 | - |
| 1.4786 | 23150 | 0.0 | - |
| 1.4818 | 23200 | 0.0 | - |
| 1.4850 | 23250 | 0.0 | - |
| 1.4882 | 23300 | 0.0 | - |
| 1.4913 | 23350 | 0.0 | - |
| 1.4945 | 23400 | 0.0 | - |
| 1.4977 | 23450 | 0.0 | - |
| 1.5009 | 23500 | 0.0 | - |
| 1.5041 | 23550 | 0.0 | - |
| 1.5073 | 23600 | 0.0 | - |
| 1.5105 | 23650 | 0.0 | - |
| 1.5137 | 23700 | 0.0 | - |
| 1.5169 | 23750 | 0.0 | - |
| 1.5201 | 23800 | 0.0 | - |
| 1.5233 | 23850 | 0.0 | - |
| 1.5265 | 23900 | 0.0002 | - |
| 1.5297 | 23950 | 0.0003 | - |
| 1.5329 | 24000 | 0.0 | - |
| 1.5361 | 24050 | 0.0 | - |
| 1.5392 | 24100 | 0.0 | - |
| 1.5424 | 24150 | 0.0 | - |
| 1.5456 | 24200 | 0.0 | - |
| 1.5488 | 24250 | 0.0 | - |
| 1.5520 | 24300 | 0.0 | - |
| 1.5552 | 24350 | 0.0 | - |
| 1.5584 | 24400 | 0.0 | - |
| 1.5616 | 24450 | 0.0 | - |
| 1.5648 | 24500 | 0.0 | - |
| 1.5680 | 24550 | 0.0 | - |
| 1.5712 | 24600 | 0.0 | - |
| 1.5744 | 24650 | 0.0 | - |
| 1.5776 | 24700 | 0.0 | - |
| 1.5808 | 24750 | 0.0 | - |
| 1.5840 | 24800 | 0.0 | - |
| 1.5871 | 24850 | 0.0 | - |
| 1.5903 | 24900 | 0.0 | - |
| 1.5935 | 24950 | 0.0 | - |
| 1.5967 | 25000 | 0.0 | - |
| 1.5999 | 25050 | 0.0 | - |
| 1.6031 | 25100 | 0.0 | - |
| 1.6063 | 25150 | 0.0 | - |
| 1.6095 | 25200 | 0.0 | - |
| 1.6127 | 25250 | 0.0 | - |
| 1.6159 | 25300 | 0.0 | - |
| 1.6191 | 25350 | 0.0 | - |
| 1.6223 | 25400 | 0.0 | - |
| 1.6255 | 25450 | 0.0 | - |
| 1.6287 | 25500 | 0.0 | - |
| 1.6319 | 25550 | 0.0 | - |
| 1.6351 | 25600 | 0.0 | - |
| 1.6382 | 25650 | 0.0 | - |
| 1.6414 | 25700 | 0.0 | - |
| 1.6446 | 25750 | 0.0 | - |
| 1.6478 | 25800 | 0.0 | - |
| 1.6510 | 25850 | 0.0 | - |
| 1.6542 | 25900 | 0.0 | - |
| 1.6574 | 25950 | 0.0 | - |
| 1.6606 | 26000 | 0.0 | - |
| 1.6638 | 26050 | 0.0 | - |
| 1.6670 | 26100 | 0.0 | - |
| 1.6702 | 26150 | 0.0 | - |
| 1.6734 | 26200 | 0.0 | - |
| 1.6766 | 26250 | 0.0 | - |
| 1.6798 | 26300 | 0.0 | - |
| 1.6830 | 26350 | 0.0 | - |
| 1.6861 | 26400 | 0.0 | - |
| 1.6893 | 26450 | 0.0 | - |
| 1.6925 | 26500 | 0.0 | - |
| 1.6957 | 26550 | 0.0 | - |
| 1.6989 | 26600 | 0.0001 | - |
| 1.7021 | 26650 | 0.0 | - |
| 1.7053 | 26700 | 0.0 | - |
| 1.7085 | 26750 | 0.0 | - |
| 1.7117 | 26800 | 0.0 | - |
| 1.7149 | 26850 | 0.0 | - |
| 1.7181 | 26900 | 0.0 | - |
| 1.7213 | 26950 | 0.0 | - |
| 1.7245 | 27000 | 0.0 | - |
| 1.7277 | 27050 | 0.0 | - |
| 1.7309 | 27100 | 0.0 | - |
| 1.7340 | 27150 | 0.0 | - |
| 1.7372 | 27200 | 0.0 | - |
| 1.7404 | 27250 | 0.0 | - |
| 1.7436 | 27300 | 0.0 | - |
| 1.7468 | 27350 | 0.0 | - |
| 1.7500 | 27400 | 0.0 | - |
| 1.7532 | 27450 | 0.0 | - |
| 1.7564 | 27500 | 0.0 | - |
| 1.7596 | 27550 | 0.0 | - |
| 1.7628 | 27600 | 0.0 | - |
| 1.7660 | 27650 | 0.0 | - |
| 1.7692 | 27700 | 0.0 | - |
| 1.7724 | 27750 | 0.0 | - |
| 1.7756 | 27800 | 0.0 | - |
| 1.7788 | 27850 | 0.0 | - |
| 1.7820 | 27900 | 0.0 | - |
| 1.7851 | 27950 | 0.0 | - |
| 1.7883 | 28000 | 0.0 | - |
| 1.7915 | 28050 | 0.0 | - |
| 1.7947 | 28100 | 0.0 | - |
| 1.7979 | 28150 | 0.0 | - |
| 1.8011 | 28200 | 0.0 | - |
| 1.8043 | 28250 | 0.0 | - |
| 1.8075 | 28300 | 0.0 | - |
| 1.8107 | 28350 | 0.0 | - |
| 1.8139 | 28400 | 0.0 | - |
| 1.8171 | 28450 | 0.0 | - |
| 1.8203 | 28500 | 0.0 | - |
| 1.8235 | 28550 | 0.0 | - |
| 1.8267 | 28600 | 0.0 | - |
| 1.8299 | 28650 | 0.0 | - |
| 1.8330 | 28700 | 0.0 | - |
| 1.8362 | 28750 | 0.0 | - |
| 1.8394 | 28800 | 0.0 | - |
| 1.8426 | 28850 | 0.0 | - |
| 1.8458 | 28900 | 0.0 | - |
| 1.8490 | 28950 | 0.0 | - |
| 1.8522 | 29000 | 0.0 | - |
| 1.8554 | 29050 | 0.0 | - |
| 1.8586 | 29100 | 0.0 | - |
| 1.8618 | 29150 | 0.0 | - |
| 1.8650 | 29200 | 0.0 | - |
| 1.8682 | 29250 | 0.0 | - |
| 1.8714 | 29300 | 0.0 | - |
| 1.8746 | 29350 | 0.0 | - |
| 1.8778 | 29400 | 0.0 | - |
| 1.8809 | 29450 | 0.0 | - |
| 1.8841 | 29500 | 0.0 | - |
| 1.8873 | 29550 | 0.0 | - |
| 1.8905 | 29600 | 0.0 | - |
| 1.8937 | 29650 | 0.0 | - |
| 1.8969 | 29700 | 0.0 | - |
| 1.9001 | 29750 | 0.0 | - |
| 1.9033 | 29800 | 0.0 | - |
| 1.9065 | 29850 | 0.0 | - |
| 1.9097 | 29900 | 0.0 | - |
| 1.9129 | 29950 | 0.0 | - |
| 1.9161 | 30000 | 0.0 | - |
| 1.9193 | 30050 | 0.0 | - |
| 1.9225 | 30100 | 0.0 | - |
| 1.9257 | 30150 | 0.0 | - |
| 1.9288 | 30200 | 0.0 | - |
| 1.9320 | 30250 | 0.0 | - |
| 1.9352 | 30300 | 0.0 | - |
| 1.9384 | 30350 | 0.0 | - |
| 1.9416 | 30400 | 0.0 | - |
| 1.9448 | 30450 | 0.0 | - |
| 1.9480 | 30500 | 0.0 | - |
| 1.9512 | 30550 | 0.0 | - |
| 1.9544 | 30600 | 0.0 | - |
| 1.9576 | 30650 | 0.0 | - |
| 1.9608 | 30700 | 0.0 | - |
| 1.9640 | 30750 | 0.0 | - |
| 1.9672 | 30800 | 0.0 | - |
| 1.9704 | 30850 | 0.0 | - |
| 1.9736 | 30900 | 0.0 | - |
| 1.9768 | 30950 | 0.0 | - |
| 1.9799 | 31000 | 0.0 | - |
| 1.9831 | 31050 | 0.0 | - |
| 1.9863 | 31100 | 0.0 | - |
| 1.9895 | 31150 | 0.0 | - |
| 1.9927 | 31200 | 0.0 | - |
| 1.9959 | 31250 | 0.0 | - |
| 1.9991 | 31300 | 0.0 | - |
| **2.0** | **31314** | **-** | **0.2634** |
| 2.0023 | 31350 | 0.0 | - |
| 2.0055 | 31400 | 0.0 | - |
| 2.0087 | 31450 | 0.0 | - |
| 2.0119 | 31500 | 0.0 | - |
| 2.0151 | 31550 | 0.0 | - |
| 2.0183 | 31600 | 0.0 | - |
| 2.0215 | 31650 | 0.0 | - |
| 2.0247 | 31700 | 0.0 | - |
| 2.0278 | 31750 | 0.0 | - |
| 2.0310 | 31800 | 0.0 | - |
| 2.0342 | 31850 | 0.0 | - |
| 2.0374 | 31900 | 0.0 | - |
| 2.0406 | 31950 | 0.0 | - |
| 2.0438 | 32000 | 0.0 | - |
| 2.0470 | 32050 | 0.0 | - |
| 2.0502 | 32100 | 0.0 | - |
| 2.0534 | 32150 | 0.0 | - |
| 2.0566 | 32200 | 0.0 | - |
| 2.0598 | 32250 | 0.0 | - |
| 2.0630 | 32300 | 0.0 | - |
| 2.0662 | 32350 | 0.0 | - |
| 2.0694 | 32400 | 0.0 | - |
| 2.0726 | 32450 | 0.0 | - |
| 2.0757 | 32500 | 0.0 | - |
| 2.0789 | 32550 | 0.0 | - |
| 2.0821 | 32600 | 0.0 | - |
| 2.0853 | 32650 | 0.0 | - |
| 2.0885 | 32700 | 0.0 | - |
| 2.0917 | 32750 | 0.0 | - |
| 2.0949 | 32800 | 0.0 | - |
| 2.0981 | 32850 | 0.0 | - |
| 2.1013 | 32900 | 0.0 | - |
| 2.1045 | 32950 | 0.0 | - |
| 2.1077 | 33000 | 0.0 | - |
| 2.1109 | 33050 | 0.0 | - |
| 2.1141 | 33100 | 0.0 | - |
| 2.1173 | 33150 | 0.0 | - |
| 2.1205 | 33200 | 0.0 | - |
| 2.1237 | 33250 | 0.0 | - |
| 2.1268 | 33300 | 0.0 | - |
| 2.1300 | 33350 | 0.0 | - |
| 2.1332 | 33400 | 0.0 | - |
| 2.1364 | 33450 | 0.0 | - |
| 2.1396 | 33500 | 0.0 | - |
| 2.1428 | 33550 | 0.0 | - |
| 2.1460 | 33600 | 0.0 | - |
| 2.1492 | 33650 | 0.0 | - |
| 2.1524 | 33700 | 0.0 | - |
| 2.1556 | 33750 | 0.0 | - |
| 2.1588 | 33800 | 0.0 | - |
| 2.1620 | 33850 | 0.0 | - |
| 2.1652 | 33900 | 0.0 | - |
| 2.1684 | 33950 | 0.0 | - |
| 2.1716 | 34000 | 0.0 | - |
| 2.1747 | 34050 | 0.0 | - |
| 2.1779 | 34100 | 0.0 | - |
| 2.1811 | 34150 | 0.0 | - |
| 2.1843 | 34200 | 0.0 | - |
| 2.1875 | 34250 | 0.0 | - |
| 2.1907 | 34300 | 0.0 | - |
| 2.1939 | 34350 | 0.0 | - |
| 2.1971 | 34400 | 0.0 | - |
| 2.2003 | 34450 | 0.0 | - |
| 2.2035 | 34500 | 0.0 | - |
| 2.2067 | 34550 | 0.0 | - |
| 2.2099 | 34600 | 0.0 | - |
| 2.2131 | 34650 | 0.0 | - |
| 2.2163 | 34700 | 0.0 | - |
| 2.2195 | 34750 | 0.0 | - |
| 2.2226 | 34800 | 0.0 | - |
| 2.2258 | 34850 | 0.0 | - |
| 2.2290 | 34900 | 0.0 | - |
| 2.2322 | 34950 | 0.0 | - |
| 2.2354 | 35000 | 0.0 | - |
| 2.2386 | 35050 | 0.0 | - |
| 2.2418 | 35100 | 0.0 | - |
| 2.2450 | 35150 | 0.0 | - |
| 2.2482 | 35200 | 0.0 | - |
| 2.2514 | 35250 | 0.0 | - |
| 2.2546 | 35300 | 0.0 | - |
| 2.2578 | 35350 | 0.0 | - |
| 2.2610 | 35400 | 0.0 | - |
| 2.2642 | 35450 | 0.0 | - |
| 2.2674 | 35500 | 0.0 | - |
| 2.2705 | 35550 | 0.0 | - |
| 2.2737 | 35600 | 0.0 | - |
| 2.2769 | 35650 | 0.0 | - |
| 2.2801 | 35700 | 0.0 | - |
| 2.2833 | 35750 | 0.0 | - |
| 2.2865 | 35800 | 0.0 | - |
| 2.2897 | 35850 | 0.0 | - |
| 2.2929 | 35900 | 0.0 | - |
| 2.2961 | 35950 | 0.0 | - |
| 2.2993 | 36000 | 0.0 | - |
| 2.3025 | 36050 | 0.0 | - |
| 2.3057 | 36100 | 0.0 | - |
| 2.3089 | 36150 | 0.0 | - |
| 2.3121 | 36200 | 0.0 | - |
| 2.3153 | 36250 | 0.0 | - |
| 2.3185 | 36300 | 0.0 | - |
| 2.3216 | 36350 | 0.0 | - |
| 2.3248 | 36400 | 0.0 | - |
| 2.3280 | 36450 | 0.0 | - |
| 2.3312 | 36500 | 0.0 | - |
| 2.3344 | 36550 | 0.0 | - |
| 2.3376 | 36600 | 0.0 | - |
| 2.3408 | 36650 | 0.0 | - |
| 2.3440 | 36700 | 0.0 | - |
| 2.3472 | 36750 | 0.0 | - |
| 2.3504 | 36800 | 0.0 | - |
| 2.3536 | 36850 | 0.0 | - |
| 2.3568 | 36900 | 0.0 | - |
| 2.3600 | 36950 | 0.0 | - |
| 2.3632 | 37000 | 0.0 | - |
| 2.3664 | 37050 | 0.0 | - |
| 2.3695 | 37100 | 0.0 | - |
| 2.3727 | 37150 | 0.0 | - |
| 2.3759 | 37200 | 0.0 | - |
| 2.3791 | 37250 | 0.0 | - |
| 2.3823 | 37300 | 0.0 | - |
| 2.3855 | 37350 | 0.0 | - |
| 2.3887 | 37400 | 0.0 | - |
| 2.3919 | 37450 | 0.0 | - |
| 2.3951 | 37500 | 0.0 | - |
| 2.3983 | 37550 | 0.0 | - |
| 2.4015 | 37600 | 0.0 | - |
| 2.4047 | 37650 | 0.0 | - |
| 2.4079 | 37700 | 0.0 | - |
| 2.4111 | 37750 | 0.0 | - |
| 2.4143 | 37800 | 0.0 | - |
| 2.4174 | 37850 | 0.0 | - |
| 2.4206 | 37900 | 0.0 | - |
| 2.4238 | 37950 | 0.0 | - |
| 2.4270 | 38000 | 0.0 | - |
| 2.4302 | 38050 | 0.0 | - |
| 2.4334 | 38100 | 0.0 | - |
| 2.4366 | 38150 | 0.0 | - |
| 2.4398 | 38200 | 0.0 | - |
| 2.4430 | 38250 | 0.0 | - |
| 2.4462 | 38300 | 0.0 | - |
| 2.4494 | 38350 | 0.0 | - |
| 2.4526 | 38400 | 0.0 | - |
| 2.4558 | 38450 | 0.0 | - |
| 2.4590 | 38500 | 0.0 | - |
| 2.4622 | 38550 | 0.0 | - |
| 2.4654 | 38600 | 0.0 | - |
| 2.4685 | 38650 | 0.0 | - |
| 2.4717 | 38700 | 0.0 | - |
| 2.4749 | 38750 | 0.0 | - |
| 2.4781 | 38800 | 0.0 | - |
| 2.4813 | 38850 | 0.0 | - |
| 2.4845 | 38900 | 0.0 | - |
| 2.4877 | 38950 | 0.0 | - |
| 2.4909 | 39000 | 0.0 | - |
| 2.4941 | 39050 | 0.0 | - |
| 2.4973 | 39100 | 0.0 | - |
| 2.5005 | 39150 | 0.0 | - |
| 2.5037 | 39200 | 0.0 | - |
| 2.5069 | 39250 | 0.0 | - |
| 2.5101 | 39300 | 0.0 | - |
| 2.5133 | 39350 | 0.0 | - |
| 2.5164 | 39400 | 0.0 | - |
| 2.5196 | 39450 | 0.0 | - |
| 2.5228 | 39500 | 0.0 | - |
| 2.5260 | 39550 | 0.0 | - |
| 2.5292 | 39600 | 0.0 | - |
| 2.5324 | 39650 | 0.0 | - |
| 2.5356 | 39700 | 0.0 | - |
| 2.5388 | 39750 | 0.0 | - |
| 2.5420 | 39800 | 0.0 | - |
| 2.5452 | 39850 | 0.0 | - |
| 2.5484 | 39900 | 0.0 | - |
| 2.5516 | 39950 | 0.0 | - |
| 2.5548 | 40000 | 0.0 | - |
| 2.5580 | 40050 | 0.0 | - |
| 2.5612 | 40100 | 0.0 | - |
| 2.5643 | 40150 | 0.0 | - |
| 2.5675 | 40200 | 0.0 | - |
| 2.5707 | 40250 | 0.0 | - |
| 2.5739 | 40300 | 0.0 | - |
| 2.5771 | 40350 | 0.0 | - |
| 2.5803 | 40400 | 0.0 | - |
| 2.5835 | 40450 | 0.0 | - |
| 2.5867 | 40500 | 0.0 | - |
| 2.5899 | 40550 | 0.0 | - |
| 2.5931 | 40600 | 0.0 | - |
| 2.5963 | 40650 | 0.0 | - |
| 2.5995 | 40700 | 0.0 | - |
| 2.6027 | 40750 | 0.0 | - |
| 2.6059 | 40800 | 0.0 | - |
| 2.6091 | 40850 | 0.0 | - |
| 2.6123 | 40900 | 0.0 | - |
| 2.6154 | 40950 | 0.0 | - |
| 2.6186 | 41000 | 0.0 | - |
| 2.6218 | 41050 | 0.0 | - |
| 2.6250 | 41100 | 0.0 | - |
| 2.6282 | 41150 | 0.0 | - |
| 2.6314 | 41200 | 0.0 | - |
| 2.6346 | 41250 | 0.0 | - |
| 2.6378 | 41300 | 0.0 | - |
| 2.6410 | 41350 | 0.0 | - |
| 2.6442 | 41400 | 0.0 | - |
| 2.6474 | 41450 | 0.0 | - |
| 2.6506 | 41500 | 0.0 | - |
| 2.6538 | 41550 | 0.0 | - |
| 2.6570 | 41600 | 0.0 | - |
| 2.6602 | 41650 | 0.0 | - |
| 2.6633 | 41700 | 0.0 | - |
| 2.6665 | 41750 | 0.0 | - |
| 2.6697 | 41800 | 0.0 | - |
| 2.6729 | 41850 | 0.0 | - |
| 2.6761 | 41900 | 0.0 | - |
| 2.6793 | 41950 | 0.0 | - |
| 2.6825 | 42000 | 0.0 | - |
| 2.6857 | 42050 | 0.0 | - |
| 2.6889 | 42100 | 0.0 | - |
| 2.6921 | 42150 | 0.0 | - |
| 2.6953 | 42200 | 0.0 | - |
| 2.6985 | 42250 | 0.0 | - |
| 2.7017 | 42300 | 0.0 | - |
| 2.7049 | 42350 | 0.0 | - |
| 2.7081 | 42400 | 0.0 | - |
| 2.7112 | 42450 | 0.0 | - |
| 2.7144 | 42500 | 0.0 | - |
| 2.7176 | 42550 | 0.0 | - |
| 2.7208 | 42600 | 0.0 | - |
| 2.7240 | 42650 | 0.0 | - |
| 2.7272 | 42700 | 0.0 | - |
| 2.7304 | 42750 | 0.0 | - |
| 2.7336 | 42800 | 0.0 | - |
| 2.7368 | 42850 | 0.0 | - |
| 2.7400 | 42900 | 0.0 | - |
| 2.7432 | 42950 | 0.0 | - |
| 2.7464 | 43000 | 0.0 | - |
| 2.7496 | 43050 | 0.0 | - |
| 2.7528 | 43100 | 0.0 | - |
| 2.7560 | 43150 | 0.0 | - |
| 2.7591 | 43200 | 0.0 | - |
| 2.7623 | 43250 | 0.0 | - |
| 2.7655 | 43300 | 0.0 | - |
| 2.7687 | 43350 | 0.0 | - |
| 2.7719 | 43400 | 0.0 | - |
| 2.7751 | 43450 | 0.0 | - |
| 2.7783 | 43500 | 0.0 | - |
| 2.7815 | 43550 | 0.0 | - |
| 2.7847 | 43600 | 0.0 | - |
| 2.7879 | 43650 | 0.0 | - |
| 2.7911 | 43700 | 0.0 | - |
| 2.7943 | 43750 | 0.0 | - |
| 2.7975 | 43800 | 0.0 | - |
| 2.8007 | 43850 | 0.0 | - |
| 2.8039 | 43900 | 0.0 | - |
| 2.8071 | 43950 | 0.0 | - |
| 2.8102 | 44000 | 0.0 | - |
| 2.8134 | 44050 | 0.0 | - |
| 2.8166 | 44100 | 0.0 | - |
| 2.8198 | 44150 | 0.0 | - |
| 2.8230 | 44200 | 0.0 | - |
| 2.8262 | 44250 | 0.0 | - |
| 2.8294 | 44300 | 0.0 | - |
| 2.8326 | 44350 | 0.0 | - |
| 2.8358 | 44400 | 0.0 | - |
| 2.8390 | 44450 | 0.0 | - |
| 2.8422 | 44500 | 0.0 | - |
| 2.8454 | 44550 | 0.0 | - |
| 2.8486 | 44600 | 0.0 | - |
| 2.8518 | 44650 | 0.0 | - |
| 2.8550 | 44700 | 0.0 | - |
| 2.8581 | 44750 | 0.0 | - |
| 2.8613 | 44800 | 0.0 | - |
| 2.8645 | 44850 | 0.0 | - |
| 2.8677 | 44900 | 0.0 | - |
| 2.8709 | 44950 | 0.0 | - |
| 2.8741 | 45000 | 0.0 | - |
| 2.8773 | 45050 | 0.0 | - |
| 2.8805 | 45100 | 0.0 | - |
| 2.8837 | 45150 | 0.0 | - |
| 2.8869 | 45200 | 0.0 | - |
| 2.8901 | 45250 | 0.0 | - |
| 2.8933 | 45300 | 0.0 | - |
| 2.8965 | 45350 | 0.0 | - |
| 2.8997 | 45400 | 0.0 | - |
| 2.9029 | 45450 | 0.0 | - |
| 2.9060 | 45500 | 0.0 | - |
| 2.9092 | 45550 | 0.0 | - |
| 2.9124 | 45600 | 0.0 | - |
| 2.9156 | 45650 | 0.0 | - |
| 2.9188 | 45700 | 0.0 | - |
| 2.9220 | 45750 | 0.0 | - |
| 2.9252 | 45800 | 0.0 | - |
| 2.9284 | 45850 | 0.0 | - |
| 2.9316 | 45900 | 0.0 | - |
| 2.9348 | 45950 | 0.0 | - |
| 2.9380 | 46000 | 0.0 | - |
| 2.9412 | 46050 | 0.0 | - |
| 2.9444 | 46100 | 0.0 | - |
| 2.9476 | 46150 | 0.0 | - |
| 2.9508 | 46200 | 0.0 | - |
| 2.9540 | 46250 | 0.0 | - |
| 2.9571 | 46300 | 0.0 | - |
| 2.9603 | 46350 | 0.0 | - |
| 2.9635 | 46400 | 0.0 | - |
| 2.9667 | 46450 | 0.0 | - |
| 2.9699 | 46500 | 0.0 | - |
| 2.9731 | 46550 | 0.0 | - |
| 2.9763 | 46600 | 0.0 | - |
| 2.9795 | 46650 | 0.0 | - |
| 2.9827 | 46700 | 0.0 | - |
| 2.9859 | 46750 | 0.0 | - |
| 2.9891 | 46800 | 0.0 | - |
| 2.9923 | 46850 | 0.0 | - |
| 2.9955 | 46900 | 0.0 | - |
| 2.9987 | 46950 | 0.0 | - |
| 3.0 | 46971 | - | 0.2651 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.2
- PyTorch: 2.1.2+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->