metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
Ini adalah kisah tentang dua orang yang tidak selaras dan tidak memiliki
kesempatan sendirian, tetapi bersama-sama mereka luar biasa.
- text: >-
ia tidak percaya pada dirinya sendiri, ia tidak memiliki rasa humor ... ia
hanya merasa bosan.
- text: >-
Keberanian band dalam menghadapi represi resmi sangat menginspirasi,
terutama bagi para hippie yang telah menua (termasuk saya sendiri).
- text: film yang cepat, lucu, dan sangat menghibur.
- text: >-
film ini mencapai dampak yang sama besar dengan menyimpan
pemikiran-pemikiran ini tersembunyi seperti halnya film "Quills" yang
menunjukkannya.
pipeline_tag: text-classification
inference: true
base_model: firqaaa/indo-sentence-bert-base
model-index:
- name: SetFit with firqaaa/indo-sentence-bert-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.82
name: Accuracy
SetFit with firqaaa/indo-sentence-bert-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses firqaaa/indo-sentence-bert-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: firqaaa/indo-sentence-bert-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
positif |
|
negatif |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.82 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("firqaaa/indo-setfit-bert-base-p1")
# Run inference
preds = model("film yang cepat, lucu, dan sangat menghibur.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 9.4029 | 51 |
Label | Training Sample Count |
---|---|
negatif | 350 |
positif | 350 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.3328 | - |
0.0065 | 50 | 0.4117 | - |
0.0130 | 100 | 0.2903 | - |
0.0195 | 150 | 0.3104 | - |
0.0260 | 200 | 0.2411 | - |
0.0326 | 250 | 0.2341 | - |
0.0391 | 300 | 0.2144 | - |
0.0456 | 350 | 0.1785 | - |
0.0521 | 400 | 0.1649 | - |
0.0586 | 450 | 0.037 | - |
0.0651 | 500 | 0.0447 | - |
0.0716 | 550 | 0.0472 | - |
0.0781 | 600 | 0.0361 | - |
0.0846 | 650 | 0.0016 | - |
0.0912 | 700 | 0.0013 | - |
0.0977 | 750 | 0.0011 | - |
0.1042 | 800 | 0.0006 | - |
0.1107 | 850 | 0.0009 | - |
0.1172 | 900 | 0.0006 | - |
0.1237 | 950 | 0.0004 | - |
0.1302 | 1000 | 0.0004 | - |
0.1367 | 1050 | 0.0005 | - |
0.1432 | 1100 | 0.0004 | - |
0.1498 | 1150 | 0.0002 | - |
0.1563 | 1200 | 0.0003 | - |
0.1628 | 1250 | 0.0004 | - |
0.1693 | 1300 | 0.0003 | - |
0.1758 | 1350 | 0.0001 | - |
0.1823 | 1400 | 0.0002 | - |
0.1888 | 1450 | 0.0003 | - |
0.1953 | 1500 | 0.0002 | - |
0.2018 | 1550 | 0.0002 | - |
0.2084 | 1600 | 0.0287 | - |
0.2149 | 1650 | 0.0003 | - |
0.2214 | 1700 | 0.0002 | - |
0.2279 | 1750 | 0.0002 | - |
0.2344 | 1800 | 0.0002 | - |
0.2409 | 1850 | 0.0004 | - |
0.2474 | 1900 | 0.0001 | - |
0.2539 | 1950 | 0.0001 | - |
0.2605 | 2000 | 0.0001 | - |
0.2670 | 2050 | 0.0001 | - |
0.2735 | 2100 | 0.0001 | - |
0.2800 | 2150 | 0.0001 | - |
0.2865 | 2200 | 0.0001 | - |
0.2930 | 2250 | 0.0003 | - |
0.2995 | 2300 | 0.0001 | - |
0.3060 | 2350 | 0.0002 | - |
0.3125 | 2400 | 0.0001 | - |
0.3191 | 2450 | 0.0 | - |
0.3256 | 2500 | 0.0001 | - |
0.3321 | 2550 | 0.0001 | - |
0.3386 | 2600 | 0.0001 | - |
0.3451 | 2650 | 0.0001 | - |
0.3516 | 2700 | 0.0003 | - |
0.3581 | 2750 | 0.0002 | - |
0.3646 | 2800 | 0.0003 | - |
0.3711 | 2850 | 0.0002 | - |
0.3777 | 2900 | 0.0002 | - |
0.3842 | 2950 | 0.0001 | - |
0.3907 | 3000 | 0.0001 | - |
0.3972 | 3050 | 0.0001 | - |
0.4037 | 3100 | 0.0001 | - |
0.4102 | 3150 | 0.0 | - |
0.4167 | 3200 | 0.0001 | - |
0.4232 | 3250 | 0.0 | - |
0.4297 | 3300 | 0.0001 | - |
0.4363 | 3350 | 0.0001 | - |
0.4428 | 3400 | 0.0001 | - |
0.4493 | 3450 | 0.0001 | - |
0.4558 | 3500 | 0.0001 | - |
0.4623 | 3550 | 0.0 | - |
0.4688 | 3600 | 0.0001 | - |
0.4753 | 3650 | 0.0001 | - |
0.4818 | 3700 | 0.0001 | - |
0.4883 | 3750 | 0.0 | - |
0.4949 | 3800 | 0.0001 | - |
0.5014 | 3850 | 0.0 | - |
0.5079 | 3900 | 0.0 | - |
0.5144 | 3950 | 0.0 | - |
0.5209 | 4000 | 0.0 | - |
0.5274 | 4050 | 0.0 | - |
0.5339 | 4100 | 0.0 | - |
0.5404 | 4150 | 0.0 | - |
0.5469 | 4200 | 0.0 | - |
0.5535 | 4250 | 0.0 | - |
0.5600 | 4300 | 0.0 | - |
0.5665 | 4350 | 0.0001 | - |
0.5730 | 4400 | 0.0 | - |
0.5795 | 4450 | 0.0 | - |
0.5860 | 4500 | 0.0 | - |
0.5925 | 4550 | 0.0 | - |
0.5990 | 4600 | 0.0 | - |
0.6055 | 4650 | 0.0 | - |
0.6121 | 4700 | 0.0 | - |
0.6186 | 4750 | 0.0 | - |
0.6251 | 4800 | 0.0 | - |
0.6316 | 4850 | 0.0001 | - |
0.6381 | 4900 | 0.0001 | - |
0.6446 | 4950 | 0.0086 | - |
0.6511 | 5000 | 0.0 | - |
0.6576 | 5050 | 0.0 | - |
0.6641 | 5100 | 0.0 | - |
0.6707 | 5150 | 0.0 | - |
0.6772 | 5200 | 0.0 | - |
0.6837 | 5250 | 0.0007 | - |
0.6902 | 5300 | 0.0 | - |
0.6967 | 5350 | 0.0001 | - |
0.7032 | 5400 | 0.0 | - |
0.7097 | 5450 | 0.0001 | - |
0.7162 | 5500 | 0.0 | - |
0.7228 | 5550 | 0.0 | - |
0.7293 | 5600 | 0.0 | - |
0.7358 | 5650 | 0.0 | - |
0.7423 | 5700 | 0.0003 | - |
0.7488 | 5750 | 0.0001 | - |
0.7553 | 5800 | 0.0 | - |
0.7618 | 5850 | 0.0 | - |
0.7683 | 5900 | 0.0 | - |
0.7748 | 5950 | 0.0 | - |
0.7814 | 6000 | 0.0 | - |
0.7879 | 6050 | 0.0 | - |
0.7944 | 6100 | 0.0 | - |
0.8009 | 6150 | 0.0 | - |
0.8074 | 6200 | 0.0 | - |
0.8139 | 6250 | 0.0 | - |
0.8204 | 6300 | 0.0 | - |
0.8269 | 6350 | 0.0 | - |
0.8334 | 6400 | 0.0 | - |
0.8400 | 6450 | 0.0 | - |
0.8465 | 6500 | 0.0 | - |
0.8530 | 6550 | 0.0 | - |
0.8595 | 6600 | 0.0 | - |
0.8660 | 6650 | 0.0 | - |
0.8725 | 6700 | 0.0 | - |
0.8790 | 6750 | 0.0 | - |
0.8855 | 6800 | 0.0 | - |
0.8920 | 6850 | 0.0 | - |
0.8986 | 6900 | 0.0 | - |
0.9051 | 6950 | 0.0 | - |
0.9116 | 7000 | 0.0 | - |
0.9181 | 7050 | 0.0 | - |
0.9246 | 7100 | 0.0 | - |
0.9311 | 7150 | 0.0 | - |
0.9376 | 7200 | 0.0 | - |
0.9441 | 7250 | 0.0 | - |
0.9506 | 7300 | 0.0 | - |
0.9572 | 7350 | 0.0 | - |
0.9637 | 7400 | 0.0 | - |
0.9702 | 7450 | 0.0 | - |
0.9767 | 7500 | 0.0 | - |
0.9832 | 7550 | 0.0 | - |
0.9897 | 7600 | 0.0 | - |
0.9962 | 7650 | 0.0 | - |
1.0 | 7679 | - | 0.2894 |
1.0027 | 7700 | 0.0 | - |
1.0092 | 7750 | 0.0 | - |
1.0158 | 7800 | 0.0 | - |
1.0223 | 7850 | 0.0 | - |
1.0288 | 7900 | 0.0 | - |
1.0353 | 7950 | 0.0 | - |
1.0418 | 8000 | 0.0 | - |
1.0483 | 8050 | 0.0 | - |
1.0548 | 8100 | 0.0 | - |
1.0613 | 8150 | 0.0 | - |
1.0678 | 8200 | 0.0 | - |
1.0744 | 8250 | 0.0 | - |
1.0809 | 8300 | 0.0 | - |
1.0874 | 8350 | 0.0 | - |
1.0939 | 8400 | 0.0 | - |
1.1004 | 8450 | 0.0 | - |
1.1069 | 8500 | 0.0 | - |
1.1134 | 8550 | 0.0 | - |
1.1199 | 8600 | 0.0 | - |
1.1264 | 8650 | 0.0 | - |
1.1330 | 8700 | 0.0 | - |
1.1395 | 8750 | 0.0 | - |
1.1460 | 8800 | 0.0 | - |
1.1525 | 8850 | 0.0 | - |
1.1590 | 8900 | 0.0 | - |
1.1655 | 8950 | 0.0 | - |
1.1720 | 9000 | 0.0 | - |
1.1785 | 9050 | 0.0 | - |
1.1851 | 9100 | 0.0 | - |
1.1916 | 9150 | 0.0 | - |
1.1981 | 9200 | 0.0 | - |
1.2046 | 9250 | 0.0 | - |
1.2111 | 9300 | 0.0 | - |
1.2176 | 9350 | 0.0 | - |
1.2241 | 9400 | 0.0 | - |
1.2306 | 9450 | 0.0 | - |
1.2371 | 9500 | 0.0 | - |
1.2437 | 9550 | 0.0 | - |
1.2502 | 9600 | 0.0 | - |
1.2567 | 9650 | 0.0 | - |
1.2632 | 9700 | 0.0 | - |
1.2697 | 9750 | 0.0 | - |
1.2762 | 9800 | 0.0 | - |
1.2827 | 9850 | 0.0 | - |
1.2892 | 9900 | 0.0 | - |
1.2957 | 9950 | 0.0 | - |
1.3023 | 10000 | 0.0 | - |
1.3088 | 10050 | 0.0 | - |
1.3153 | 10100 | 0.0 | - |
1.3218 | 10150 | 0.0 | - |
1.3283 | 10200 | 0.0 | - |
1.3348 | 10250 | 0.0 | - |
1.3413 | 10300 | 0.0 | - |
1.3478 | 10350 | 0.0 | - |
1.3543 | 10400 | 0.0 | - |
1.3609 | 10450 | 0.0 | - |
1.3674 | 10500 | 0.0 | - |
1.3739 | 10550 | 0.0 | - |
1.3804 | 10600 | 0.0 | - |
1.3869 | 10650 | 0.0 | - |
1.3934 | 10700 | 0.0 | - |
1.3999 | 10750 | 0.0 | - |
1.4064 | 10800 | 0.0 | - |
1.4129 | 10850 | 0.0 | - |
1.4195 | 10900 | 0.0 | - |
1.4260 | 10950 | 0.0 | - |
1.4325 | 11000 | 0.0 | - |
1.4390 | 11050 | 0.0 | - |
1.4455 | 11100 | 0.0 | - |
1.4520 | 11150 | 0.0 | - |
1.4585 | 11200 | 0.0 | - |
1.4650 | 11250 | 0.0 | - |
1.4715 | 11300 | 0.0 | - |
1.4781 | 11350 | 0.0 | - |
1.4846 | 11400 | 0.0 | - |
1.4911 | 11450 | 0.0 | - |
1.4976 | 11500 | 0.0 | - |
1.5041 | 11550 | 0.0 | - |
1.5106 | 11600 | 0.0 | - |
1.5171 | 11650 | 0.0 | - |
1.5236 | 11700 | 0.0 | - |
1.5301 | 11750 | 0.0 | - |
1.5367 | 11800 | 0.0 | - |
1.5432 | 11850 | 0.0 | - |
1.5497 | 11900 | 0.0 | - |
1.5562 | 11950 | 0.0 | - |
1.5627 | 12000 | 0.0 | - |
1.5692 | 12050 | 0.0 | - |
1.5757 | 12100 | 0.0 | - |
1.5822 | 12150 | 0.0 | - |
1.5887 | 12200 | 0.0 | - |
1.5953 | 12250 | 0.0 | - |
1.6018 | 12300 | 0.0 | - |
1.6083 | 12350 | 0.0 | - |
1.6148 | 12400 | 0.0 | - |
1.6213 | 12450 | 0.0 | - |
1.6278 | 12500 | 0.0 | - |
1.6343 | 12550 | 0.0 | - |
1.6408 | 12600 | 0.0 | - |
1.6473 | 12650 | 0.0 | - |
1.6539 | 12700 | 0.0 | - |
1.6604 | 12750 | 0.0 | - |
1.6669 | 12800 | 0.0 | - |
1.6734 | 12850 | 0.0 | - |
1.6799 | 12900 | 0.0 | - |
1.6864 | 12950 | 0.0 | - |
1.6929 | 13000 | 0.0 | - |
1.6994 | 13050 | 0.0 | - |
1.7060 | 13100 | 0.0 | - |
1.7125 | 13150 | 0.0 | - |
1.7190 | 13200 | 0.0 | - |
1.7255 | 13250 | 0.0 | - |
1.7320 | 13300 | 0.0 | - |
1.7385 | 13350 | 0.0 | - |
1.7450 | 13400 | 0.0 | - |
1.7515 | 13450 | 0.0 | - |
1.7580 | 13500 | 0.0 | - |
1.7646 | 13550 | 0.0 | - |
1.7711 | 13600 | 0.0 | - |
1.7776 | 13650 | 0.0 | - |
1.7841 | 13700 | 0.0 | - |
1.7906 | 13750 | 0.0 | - |
1.7971 | 13800 | 0.0 | - |
1.8036 | 13850 | 0.0 | - |
1.8101 | 13900 | 0.0 | - |
1.8166 | 13950 | 0.0 | - |
1.8232 | 14000 | 0.0 | - |
1.8297 | 14050 | 0.0 | - |
1.8362 | 14100 | 0.0 | - |
1.8427 | 14150 | 0.0 | - |
1.8492 | 14200 | 0.0 | - |
1.8557 | 14250 | 0.0 | - |
1.8622 | 14300 | 0.0 | - |
1.8687 | 14350 | 0.0 | - |
1.8752 | 14400 | 0.0 | - |
1.8818 | 14450 | 0.0 | - |
1.8883 | 14500 | 0.0 | - |
1.8948 | 14550 | 0.0 | - |
1.9013 | 14600 | 0.0 | - |
1.9078 | 14650 | 0.0 | - |
1.9143 | 14700 | 0.0 | - |
1.9208 | 14750 | 0.0 | - |
1.9273 | 14800 | 0.0 | - |
1.9338 | 14850 | 0.0 | - |
1.9404 | 14900 | 0.0 | - |
1.9469 | 14950 | 0.0 | - |
1.9534 | 15000 | 0.0 | - |
1.9599 | 15050 | 0.0 | - |
1.9664 | 15100 | 0.0 | - |
1.9729 | 15150 | 0.0 | - |
1.9794 | 15200 | 0.0 | - |
1.9859 | 15250 | 0.0 | - |
1.9924 | 15300 | 0.0 | - |
1.9990 | 15350 | 0.0 | - |
2.0 | 15358 | - | 0.2831 |
2.0055 | 15400 | 0.0 | - |
2.0120 | 15450 | 0.0 | - |
2.0185 | 15500 | 0.0 | - |
2.0250 | 15550 | 0.0 | - |
2.0315 | 15600 | 0.0 | - |
2.0380 | 15650 | 0.0 | - |
2.0445 | 15700 | 0.0 | - |
2.0510 | 15750 | 0.0 | - |
2.0576 | 15800 | 0.0 | - |
2.0641 | 15850 | 0.0 | - |
2.0706 | 15900 | 0.0 | - |
2.0771 | 15950 | 0.0 | - |
2.0836 | 16000 | 0.0 | - |
2.0901 | 16050 | 0.0 | - |
2.0966 | 16100 | 0.0 | - |
2.1031 | 16150 | 0.0 | - |
2.1096 | 16200 | 0.0 | - |
2.1162 | 16250 | 0.0 | - |
2.1227 | 16300 | 0.0 | - |
2.1292 | 16350 | 0.0 | - |
2.1357 | 16400 | 0.0 | - |
2.1422 | 16450 | 0.0 | - |
2.1487 | 16500 | 0.0 | - |
2.1552 | 16550 | 0.0 | - |
2.1617 | 16600 | 0.0 | - |
2.1683 | 16650 | 0.0 | - |
2.1748 | 16700 | 0.0 | - |
2.1813 | 16750 | 0.0 | - |
2.1878 | 16800 | 0.0 | - |
2.1943 | 16850 | 0.0 | - |
2.2008 | 16900 | 0.0 | - |
2.2073 | 16950 | 0.0 | - |
2.2138 | 17000 | 0.0 | - |
2.2203 | 17050 | 0.0 | - |
2.2269 | 17100 | 0.0 | - |
2.2334 | 17150 | 0.0 | - |
2.2399 | 17200 | 0.0 | - |
2.2464 | 17250 | 0.0 | - |
2.2529 | 17300 | 0.0 | - |
2.2594 | 17350 | 0.0 | - |
2.2659 | 17400 | 0.0 | - |
2.2724 | 17450 | 0.0 | - |
2.2789 | 17500 | 0.0 | - |
2.2855 | 17550 | 0.0 | - |
2.2920 | 17600 | 0.0 | - |
2.2985 | 17650 | 0.0 | - |
2.3050 | 17700 | 0.0 | - |
2.3115 | 17750 | 0.0 | - |
2.3180 | 17800 | 0.0 | - |
2.3245 | 17850 | 0.0 | - |
2.3310 | 17900 | 0.0 | - |
2.3375 | 17950 | 0.0 | - |
2.3441 | 18000 | 0.0 | - |
2.3506 | 18050 | 0.0 | - |
2.3571 | 18100 | 0.0 | - |
2.3636 | 18150 | 0.0 | - |
2.3701 | 18200 | 0.0 | - |
2.3766 | 18250 | 0.0 | - |
2.3831 | 18300 | 0.0 | - |
2.3896 | 18350 | 0.0 | - |
2.3961 | 18400 | 0.0 | - |
2.4027 | 18450 | 0.0 | - |
2.4092 | 18500 | 0.0 | - |
2.4157 | 18550 | 0.0 | - |
2.4222 | 18600 | 0.0 | - |
2.4287 | 18650 | 0.0 | - |
2.4352 | 18700 | 0.0 | - |
2.4417 | 18750 | 0.0 | - |
2.4482 | 18800 | 0.0 | - |
2.4547 | 18850 | 0.0 | - |
2.4613 | 18900 | 0.0 | - |
2.4678 | 18950 | 0.0 | - |
2.4743 | 19000 | 0.0 | - |
2.4808 | 19050 | 0.0 | - |
2.4873 | 19100 | 0.0 | - |
2.4938 | 19150 | 0.0 | - |
2.5003 | 19200 | 0.0 | - |
2.5068 | 19250 | 0.0 | - |
2.5133 | 19300 | 0.0 | - |
2.5199 | 19350 | 0.0 | - |
2.5264 | 19400 | 0.0 | - |
2.5329 | 19450 | 0.0 | - |
2.5394 | 19500 | 0.0 | - |
2.5459 | 19550 | 0.0 | - |
2.5524 | 19600 | 0.0 | - |
2.5589 | 19650 | 0.0 | - |
2.5654 | 19700 | 0.0 | - |
2.5719 | 19750 | 0.0 | - |
2.5785 | 19800 | 0.0 | - |
2.5850 | 19850 | 0.0 | - |
2.5915 | 19900 | 0.0 | - |
2.5980 | 19950 | 0.0 | - |
2.6045 | 20000 | 0.0 | - |
2.6110 | 20050 | 0.0 | - |
2.6175 | 20100 | 0.0 | - |
2.6240 | 20150 | 0.0 | - |
2.6306 | 20200 | 0.0 | - |
2.6371 | 20250 | 0.0 | - |
2.6436 | 20300 | 0.0 | - |
2.6501 | 20350 | 0.0 | - |
2.6566 | 20400 | 0.0 | - |
2.6631 | 20450 | 0.0 | - |
2.6696 | 20500 | 0.0 | - |
2.6761 | 20550 | 0.0 | - |
2.6826 | 20600 | 0.0 | - |
2.6892 | 20650 | 0.0 | - |
2.6957 | 20700 | 0.0 | - |
2.7022 | 20750 | 0.0 | - |
2.7087 | 20800 | 0.0 | - |
2.7152 | 20850 | 0.0 | - |
2.7217 | 20900 | 0.0 | - |
2.7282 | 20950 | 0.0 | - |
2.7347 | 21000 | 0.0 | - |
2.7412 | 21050 | 0.0 | - |
2.7478 | 21100 | 0.0 | - |
2.7543 | 21150 | 0.0 | - |
2.7608 | 21200 | 0.0 | - |
2.7673 | 21250 | 0.0 | - |
2.7738 | 21300 | 0.0 | - |
2.7803 | 21350 | 0.0 | - |
2.7868 | 21400 | 0.0 | - |
2.7933 | 21450 | 0.0 | - |
2.7998 | 21500 | 0.0 | - |
2.8064 | 21550 | 0.0 | - |
2.8129 | 21600 | 0.0 | - |
2.8194 | 21650 | 0.0 | - |
2.8259 | 21700 | 0.0 | - |
2.8324 | 21750 | 0.0 | - |
2.8389 | 21800 | 0.0 | - |
2.8454 | 21850 | 0.0 | - |
2.8519 | 21900 | 0.0 | - |
2.8584 | 21950 | 0.0 | - |
2.8650 | 22000 | 0.0 | - |
2.8715 | 22050 | 0.0 | - |
2.8780 | 22100 | 0.0 | - |
2.8845 | 22150 | 0.0 | - |
2.8910 | 22200 | 0.0 | - |
2.8975 | 22250 | 0.0 | - |
2.9040 | 22300 | 0.0 | - |
2.9105 | 22350 | 0.0 | - |
2.9170 | 22400 | 0.0 | - |
2.9236 | 22450 | 0.0 | - |
2.9301 | 22500 | 0.0 | - |
2.9366 | 22550 | 0.0 | - |
2.9431 | 22600 | 0.0 | - |
2.9496 | 22650 | 0.0 | - |
2.9561 | 22700 | 0.0 | - |
2.9626 | 22750 | 0.0 | - |
2.9691 | 22800 | 0.0 | - |
2.9756 | 22850 | 0.0 | - |
2.9822 | 22900 | 0.0 | - |
2.9887 | 22950 | 0.0 | - |
2.9952 | 23000 | 0.0 | - |
3.0 | 23037 | - | 0.2771 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.2
- PyTorch: 2.1.2+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}