firqaaa's picture
Update README.md
4fa0d9d verified
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
license: apache-2.0
language:
  - id
library_name: sentence-transformers

indo-sentence-bert-large

This is a sentence-transformers model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["Ibukota Perancis adalah Paris", 
            "Menara Eifel terletak di Paris, Perancis", 
            "Pizza adalah makanan khas Italia", 
            "Saya kuliah di Carneige Mellon University"]

model = SentenceTransformer('firqaaa/indo-sentence-bert-large')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["Ibukota Perancis adalah Paris", 
             "Menara Eifel terletak di Paris, Perancis", 
             "Pizza adalah makanan khas Italia", 
             "Saya kuliah di Carneige Mellon University"]


# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('firqaaa/indo-sentence-bert-large')
model = AutoModel.from_pretrained('firqaaa/indo-sentence-bert-large')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader of length 93567 with parameters:

{'batch_size': 4}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 9356,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

  @inproceedings{reimers-2019-sentence-bert,
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
  author = "Reimers, Nils and Gurevych, Iryna",
  booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
  month = "11",
  year = "2019",
  publisher = "Association for Computational Linguistics",
  url = "https://arxiv.org/abs/1908.10084",
  author = "Arasyi, Firqa",
  title  = "indo-sentence-bert: Sentence Transformer for Bahasa Indonesia with Multiple Negative Ranking Loss",
  year = "2024",
  month = "2"
  publisher = "Huggingface",
  journal = "Huggingface"
  howpublished = "https://huggingface.co/firqaaa/indo-sentence-bert-large/",