metadata
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
tags:
- generated_from_trainer
datasets:
- narad/ravdess
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2-large-xlsr-53-english-finetuned-ravdess
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: RAVDESS
type: narad/ravdess
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.8298611111111112
- name: Precision
type: precision
value: 0.8453025128787324
- name: Recall
type: recall
value: 0.8298611111111112
- name: F1
type: f1
value: 0.8329568451751053
wav2vec2-large-xlsr-53-english-finetuned-ravdess
This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-english on the RAVDESS dataset. It achieves the following results on the evaluation set:
- Loss: 0.5624
- Accuracy: 0.8299
- Precision: 0.8453
- Recall: 0.8299
- F1: 0.8330
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.9765 | 1.0 | 288 | 1.9102 | 0.3090 | 0.3203 | 0.3090 | 0.1941 |
1.4803 | 2.0 | 576 | 1.4590 | 0.5660 | 0.5493 | 0.5660 | 0.4811 |
1.1625 | 3.0 | 864 | 1.2308 | 0.6215 | 0.6299 | 0.6215 | 0.5936 |
0.8354 | 4.0 | 1152 | 0.7821 | 0.7222 | 0.7555 | 0.7222 | 0.6869 |
0.2066 | 5.0 | 1440 | 0.7910 | 0.7708 | 0.8373 | 0.7708 | 0.7881 |
0.6335 | 6.0 | 1728 | 0.5624 | 0.8299 | 0.8453 | 0.8299 | 0.8330 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1