|
--- |
|
license: mit |
|
base_model: filevich/robertita-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- fact2020 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: robertita-cased-finetuned-fact |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: fact2020 |
|
type: fact2020 |
|
config: fact2020 |
|
split: validation |
|
args: fact2020 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9958259428424656 |
|
- name: Recall |
|
type: recall |
|
value: 0.990818034441507 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9915358119908528 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.990818034441507 |
|
language: |
|
- es |
|
pipeline_tag: token-classification |
|
widget: |
|
- text: "Guatemala sufre y llora a sus fallecidos bajo un manto negro de ceniza." |
|
- text: "La estrategia se ejecuta, no se cuenta." |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robertita-cased-finetuned-fact |
|
|
|
This model is a fine-tuned version of [filevich/robertita-cased](https://huggingface.co/filevich/robertita-cased) on the fact2020 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0402 |
|
- Precision: 0.9958 |
|
- Recall: 0.9908 |
|
- F1: 0.9915 |
|
- Accuracy: 0.9908 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 116 | 0.0372 | 0.9947 | 0.9889 | 0.9895 | 0.9889 | |
|
| No log | 2.0 | 232 | 0.0388 | 0.9961 | 0.9903 | 0.9913 | 0.9903 | |
|
| No log | 3.0 | 348 | 0.0402 | 0.9958 | 0.9908 | 0.9915 | 0.9908 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |