fgiauna's picture
update model card README.md
71d9dfc
|
raw
history blame
4.36 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: camembert-ner-finetuned-jul
    results: []

camembert-ner-finetuned-jul

This model is a fine-tuned version of Jean-Baptiste/camembert-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1522
  • Loc: {'precision': 0.7952488687782805, 'recall': 0.703, 'f1': 0.7462845010615711, 'number': 1000}
  • Misc: {'precision': 0.6310931641188348, 'recall': 0.6640364188163884, 'f1': 0.6471458148476782, 'number': 3295}
  • Org: {'precision': 0.6708074534161491, 'recall': 0.6792452830188679, 'f1': 0.6749999999999999, 'number': 477}
  • Per: {'precision': 0.7778738115816768, 'recall': 0.7772020725388601, 'f1': 0.7775377969762419, 'number': 1158}
  • Overall Precision: 0.6869
  • Overall Recall: 0.6939
  • Overall F1: 0.6904
  • Overall Accuracy: 0.9567

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Loc Misc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1195 1.0 2044 0.1425 {'precision': 0.750620347394541, 'recall': 0.605, 'f1': 0.6699889258028793, 'number': 1000} {'precision': 0.6498784300104203, 'recall': 0.5678300455235205, 'f1': 0.606090055069647, 'number': 3295} {'precision': 0.6763392857142857, 'recall': 0.6352201257861635, 'f1': 0.6551351351351351, 'number': 477} {'precision': 0.6595744680851063, 'recall': 0.7763385146804835, 'f1': 0.7132090440301467, 'number': 1158} 0.6692 0.6202 0.6438 0.9511
0.0736 2.0 4088 0.1387 {'precision': 0.7714604236343366, 'recall': 0.692, 'f1': 0.7295730100158145, 'number': 1000} {'precision': 0.6479814115596864, 'recall': 0.6770864946889226, 'f1': 0.6622143069159989, 'number': 3295} {'precision': 0.7018348623853211, 'recall': 0.6415094339622641, 'f1': 0.6703176341730558, 'number': 477} {'precision': 0.7717484926787253, 'recall': 0.7737478411053541, 'f1': 0.7727468736524364, 'number': 1158} 0.6948 0.6956 0.6952 0.9575
0.0499 3.0 6132 0.1522 {'precision': 0.7952488687782805, 'recall': 0.703, 'f1': 0.7462845010615711, 'number': 1000} {'precision': 0.6310931641188348, 'recall': 0.6640364188163884, 'f1': 0.6471458148476782, 'number': 3295} {'precision': 0.6708074534161491, 'recall': 0.6792452830188679, 'f1': 0.6749999999999999, 'number': 477} {'precision': 0.7778738115816768, 'recall': 0.7772020725388601, 'f1': 0.7775377969762419, 'number': 1158} 0.6869 0.6939 0.6904 0.9567

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3