felixbrock's picture
Fine tune model
886a91d verified
|
raw
history blame
2 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
base_model: roberta-large
model-index:
  - name: roberta-large-lora-token-classification
    results: []

roberta-large-lora-token-classification

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4772
  • Precision: 0.7667
  • Recall: 0.7573
  • F1-score: 0.7620
  • Accuracy: 0.7978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1-score Accuracy
0.6534 1.0 762 0.5813 0.5741 0.8633 0.6896 0.6678
0.5574 2.0 1524 0.6461 0.5373 0.8848 0.6686 0.6251
0.5534 3.0 2286 0.5031 0.6658 0.8264 0.7375 0.7485
0.5434 4.0 3048 0.4725 0.7818 0.7373 0.7589 0.7997
0.5531 5.0 3810 0.4772 0.7667 0.7573 0.7620 0.7978

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2