felfri commited on
Commit
038d433
1 Parent(s): 1fce098

Upload LlamaForCausalLM

Browse files
README.md CHANGED
@@ -1,496 +1,199 @@
1
  ---
2
- language:
3
- - en
4
- license: llama3
5
- tags:
6
- - facebook
7
- - meta
8
- - pytorch
9
- - llama
10
- - llama-3
11
- pipeline_tag: text-generation
12
- extra_gated_prompt: "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version\
13
- \ Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for\
14
- \ use, reproduction, distribution and modification of the Llama Materials set forth\
15
- \ herein.\n\"Documentation\" means the specifications, manuals and documentation\
16
- \ accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\
17
- \"Licensee\" or \"you\" means you, or your employer or any other person or entity\
18
- \ (if you are entering into this Agreement on such person or entity’s behalf), of\
19
- \ the age required under applicable laws, rules or regulations to provide legal\
20
- \ consent and that has legal authority to bind your employer or such other person\
21
- \ or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama\
22
- \ 3\" means the foundational large language models and software and algorithms,\
23
- \ including machine-learning model code, trained model weights, inference-enabling\
24
- \ code, training-enabling code, fine-tuning enabling code and other elements of\
25
- \ the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\
26
- \"Llama Materials\" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation\
27
- \ (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"\
28
- we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\
29
- \ an entity, your principal place of business is in the EEA or Switzerland) and\
30
- \ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n\
31
- \ \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted\
32
- \ a non-exclusive, worldwide, non-transferable and royalty-free limited license\
33
- \ under Meta’s intellectual property or other rights owned by Meta embodied in the\
34
- \ Llama Materials to use, reproduce, distribute, copy, create derivative works of,\
35
- \ and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni.\
36
- \ If you distribute or make available the Llama Materials (or any derivative works\
37
- \ thereof), or a product or service that uses any of them, including another AI\
38
- \ model, you shall (A) provide a copy of this Agreement with any such Llama Materials;\
39
- \ and (B) prominently display “Built with Meta Llama 3” on a related website, user\
40
- \ interface, blogpost, about page, or product documentation. If you use the Llama\
41
- \ Materials to create, train, fine tune, or otherwise improve an AI model, which\
42
- \ is distributed or made available, you shall also include “Llama 3” at the beginning\
43
- \ of any such AI model name.\nii. If you receive Llama Materials, or any derivative\
44
- \ works thereof, from a Licensee as part of an integrated end user product, then\
45
- \ Section 2 of this Agreement will not apply to you.\niii. You must retain in all\
46
- \ copies of the Llama Materials that you distribute the following attribution notice\
47
- \ within a “Notice” text file distributed as a part of such copies: “Meta Llama\
48
- \ 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms,\
49
- \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\
50
- \ applicable laws and regulations (including trade compliance laws and regulations)\
51
- \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\
52
- \ https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference\
53
- \ into this Agreement.\nv. You will not use the Llama Materials or any output or\
54
- \ results of the Llama Materials to improve any other large language model (excluding\
55
- \ Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If,\
56
- \ on the Meta Llama 3 version release date, the monthly active users of the products\
57
- \ or services made available by or for Licensee, or Licensee’s affiliates, is greater\
58
- \ than 700 million monthly active users in the preceding calendar month, you must\
59
- \ request a license from Meta, which Meta may grant to you in its sole discretion,\
60
- \ and you are not authorized to exercise any of the rights under this Agreement\
61
- \ unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer\
62
- \ of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT\
63
- \ AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF\
64
- \ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,\
65
- \ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\
66
- \ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\
67
- \ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\
68
- \ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n\
69
- 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER\
70
- \ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY,\
71
- \ OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT,\
72
- \ SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META\
73
- \ OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n\
74
- 5. Intellectual Property.\na. No trademark licenses are granted under this Agreement,\
75
- \ and in connection with the Llama Materials, neither Meta nor Licensee may use\
76
- \ any name or mark owned by or associated with the other or any of its affiliates,\
77
- \ except as required for reasonable and customary use in describing and redistributing\
78
- \ the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you\
79
- \ a license to use “Llama 3” (the “Mark”) solely as required to comply with the\
80
- \ last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently\
81
- \ accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All\
82
- \ goodwill arising out of your use of the Mark will inure to the benefit of Meta.\n\
83
- b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for\
84
- \ Meta, with respect to any derivative works and modifications of the Llama Materials\
85
- \ that are made by you, as between you and Meta, you are and will be the owner of\
86
- \ such derivative works and modifications.\nc. If you institute litigation or other\
87
- \ proceedings against Meta or any entity (including a cross-claim or counterclaim\
88
- \ in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results,\
89
- \ or any portion of any of the foregoing, constitutes infringement of intellectual\
90
- \ property or other rights owned or licensable by you, then any licenses granted\
91
- \ to you under this Agreement shall terminate as of the date such litigation or\
92
- \ claim is filed or instituted. You will indemnify and hold harmless Meta from and\
93
- \ against any claim by any third party arising out of or related to your use or\
94
- \ distribution of the Llama Materials.\n6. Term and Termination. The term of this\
95
- \ Agreement will commence upon your acceptance of this Agreement or access to the\
96
- \ Llama Materials and will continue in full force and effect until terminated in\
97
- \ accordance with the terms and conditions herein. Meta may terminate this Agreement\
98
- \ if you are in breach of any term or condition of this Agreement. Upon termination\
99
- \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\
100
- \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\
101
- \ and Jurisdiction. This Agreement will be governed and construed under the laws\
102
- \ of the State of California without regard to choice of law principles, and the\
103
- \ UN Convention on Contracts for the International Sale of Goods does not apply\
104
- \ to this Agreement. The courts of California shall have exclusive jurisdiction\
105
- \ of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use\
106
- \ Policy\nMeta is committed to promoting safe and fair use of its tools and features,\
107
- \ including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable\
108
- \ Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n\
109
- #### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly.\
110
- \ You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate\
111
- \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\
112
- \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
113
- \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\
114
- \ or harm to children, including the solicitation, creation, acquisition, or dissemination\
115
- \ of child exploitative content or failure to report Child Sexual Abuse Material\n\
116
- \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\
117
- \ illegal distribution of information or materials to minors, including obscene\
118
- \ materials, or failure to employ legally required age-gating in connection with\
119
- \ such information or materials.\n 5. Sexual solicitation\n 6. Any\
120
- \ other criminal activity\n 2. Engage in, promote, incite, or facilitate the\
121
- \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
122
- \ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful\
123
- \ or harmful conduct in the provision of employment, employment benefits, credit,\
124
- \ housing, other economic benefits, or other essential goods and services\n 4.\
125
- \ Engage in the unauthorized or unlicensed practice of any profession including,\
126
- \ but not limited to, financial, legal, medical/health, or related professional\
127
- \ practices\n 5. Collect, process, disclose, generate, or infer health, demographic,\
128
- \ or other sensitive personal or private information about individuals without rights\
129
- \ and consents required by applicable laws\n 6. Engage in or facilitate any action\
130
- \ or generate any content that infringes, misappropriates, or otherwise violates\
131
- \ any third-party rights, including the outputs or results of any products or services\
132
- \ using the Llama Materials\n 7. Create, generate, or facilitate the creation\
133
- \ of malicious code, malware, computer viruses or do anything else that could disable,\
134
- \ overburden, interfere with or impair the proper working, integrity, operation\
135
- \ or appearance of a website or computer system\n2. Engage in, promote, incite,\
136
- \ facilitate, or assist in the planning or development of activities that present\
137
- \ a risk of death or bodily harm to individuals, including use of Meta Llama 3 related\
138
- \ to the following:\n 1. Military, warfare, nuclear industries or applications,\
139
- \ espionage, use for materials or activities that are subject to the International\
140
- \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
141
- \ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\
142
- \ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\
143
- \ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\
144
- \ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\
145
- \ content intended to incite or promote violence, abuse, or any infliction of bodily\
146
- \ harm to an individual\n3. Intentionally deceive or mislead others, including use\
147
- \ of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering\
148
- \ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\
149
- \ or furthering defamatory content, including the creation of defamatory statements,\
150
- \ images, or other content\n 3. Generating, promoting, or further distributing\
151
- \ spam\n 4. Impersonating another individual without consent, authorization,\
152
- \ or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are\
153
- \ human-generated\n 6. Generating or facilitating false online engagement, including\
154
- \ fake reviews and other means of fake online engagement\n4. Fail to appropriately\
155
- \ disclose to end users any known dangers of your AI system\nPlease report any violation\
156
- \ of this Policy, software “bug,” or other problems that could lead to a violation\
157
- \ of this Policy through one of the following means:\n * Reporting issues with\
158
- \ the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n\
159
- \ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\
160
- \ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\
161
- \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com"
162
- extra_gated_fields:
163
- First Name: text
164
- Last Name: text
165
- Date of birth: date_picker
166
- Country: country
167
- Affiliation: text
168
- geo: ip_location
169
- ? By clicking Submit below I accept the terms of the license and acknowledge that
170
- the information I provide will be collected stored processed and shared in accordance
171
- with the Meta Privacy Policy
172
- : checkbox
173
- extra_gated_description: The information you provide will be collected, stored, processed
174
- and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
175
- extra_gated_button_content: Submit
176
  ---
177
 
178
- # This is a German version of Meta's LlamaGuard2 model. More details will follow soon. Use model with care.
179
 
180
- Run this model with
181
 
182
- ```Python
183
- from transformers import AutoTokenizer, AutoModelForCausalLM
184
- import torch
185
 
186
- model_id = "felfri/Llama-Guard-2-8B-German"
187
- device = "cuda"
188
- dtype = torch.bfloat16
189
 
190
- tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
191
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device)
192
 
193
- def moderate(chat):
194
- input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
195
- output = model.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
196
- prompt_len = input_ids.shape[-1]
197
- return tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
198
 
199
- moderate([
200
- {"role": "user", "content": "Kann ich Zeit totschlagen?"},
201
- {"role": "assistant", "content": "Ja, es ist gar kein Probelm Zeit totzuschlagen. Du könntest zum Beispiel ein Buch lesen."},
202
- ])
203
- # `safe`
204
- ```
205
 
206
- # Model Details
207
 
208
- Meta Llama Guard 2 is an 8B parameter Llama 3-based [1] LLM safeguard model. Similar to [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/), it can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.
209
- Below is a response classification example input and output for Llama Guard 2.
 
 
 
 
 
210
 
211
- <p align="center">
212
- <img src="https://github.com/facebookresearch/PurpleLlama/raw/main/Llama-Guard2/llamaguard_example.png" width="800"/>
213
- </p>
214
 
215
- In order to produce classifier scores, we look at the probability for the first token, and use that as the “unsafe” class probability. We can then apply score thresholding to make binary decisions.
216
 
217
- # Harm Taxonomy and Policy
 
 
218
 
219
- The model is trained to predict safety labels on the 11 categories shown below, based on the [MLCommons taxonomy](https://mlcommons.org/2024/04/mlc-aisafety-v0-5-poc/) of hazards.
220
- <table align="center">
221
- <thead>
222
- <tr>
223
- <th colspan="2">Harm categories</th>
224
- </tr>
225
- </thead>
226
- <tbody>
227
- <tr>
228
- <td>S1: Violent Crimes</td>
229
- <td>S2: Non-Violent Crimes</td>
230
- </tr>
231
- <tr>
232
- <td>S3: Sex-Related Crimes</td>
233
- <td>S4: Child Sexual Exploitation</td>
234
- </tr>
235
- <tr>
236
- <td>S5: Specialized Advice</td>
237
- <td>S6: Privacy</td>
238
- </tr>
239
- <tr>
240
- <td>S7: Intellectual Property</td>
241
- <td>S8: Indiscriminate Weapons </td>
242
- </tr>
243
- <tr>
244
- <td>S9: Hate</td>
245
- <td>S10: Suicide &amp; Self-Harm</td>
246
- </tr>
247
- <tr>
248
- <td>S11: Sexual Content</td>
249
- <td></td>
250
- </tr>
251
- </tbody>
252
- </table>
253
 
254
- **S1: Violent Crimes**
255
 
256
- Responses that enable, encourage, or endorse the commission of violent crimes, including: (1) unlawful violence toward people (ex: terrorism, genocide, murder, hate-motivated violent crimes, child abuse, assault, battery, kidnapping) and (2) unlawful violence toward animals (ex: animal abuse)
257
 
258
- **S2: Non-Violent Crimes**
259
 
260
- Responses that enable, encourage, or endorse the commission of non-violent crimes, including: (1) personal crimes (ex: labor trafficking, threats, intimidation, hate-motivated non-violent crimes), (2) financial crimes (ex: fraud, scams, money laundering), (3) property crimes (ex: theft, arson, vandalism), (4) drug crimes (ex: creating or using regulated substances), (5) weapons crimes (ex: producing unlicensed firearms), and (6) cyber crimes (ex: hacking)
261
 
262
- **S3: Sex-Related Crimes**
263
 
264
- Responses that enable, encourage, or endorse the commission of sex-related crimes, including: (1) sex trafficking, (2) sexual assault (ex: rape), (3) sexual harassment (physical, verbal, or visual), and (4) prostitution
265
 
266
- **S4: Child Sexual Exploitation**
267
 
268
- Responses that contain, describe, enable, encourage, or endorse the sexual abuse of children
269
 
270
- **S5: Specialized Advice**
271
 
272
- Responses that contain specialized financial, medical, or legal advice, or that indicate dangerous activities or objects are safe
273
 
274
- **S6: Privacy**
275
 
276
- Responses that contain sensitive, nonpublic personal information that could undermine someone's physical, digital, or financial security
277
 
278
- **S7: Intellectual Property**
279
 
280
- Responses that may violate the intellectual property rights of any third party
281
 
282
- **S8: Indiscriminate Weapons**
283
 
284
- Responses that enable, encourage, or endorse the creation of indiscriminate weapons, including: (1) chemical weapons (ex: nerve gas), (2) biological weapons (ex: anthrax), (3) radiological weapons (ex: cobalt bombs), (4) nuclear weapons (ex: fission bombs), and (5) high-yield explosive weapons (ex: cluster munitions)
285
 
286
- **S9: Hate**
287
 
288
- Responses that demean or dehumanize people on the basis of their sensitive, personal characteristics (i.e., race, color, ethnicity, national origin, disability, religious affiliation, caste, sexual orientation, sex, gender identity, and/or serious disease)
289
 
290
- **S10: Suicide & Self-Harm**
291
 
292
- Responses that enable, encourage, or endorse acts of intentional self-harm, including: (1) suicide, (2) self-injury (ex: cutting), and (3) disordered eating
293
 
294
- **S11: Sexual Content**
295
 
296
- Responses that contain erotica
297
 
 
298
 
299
- ## How to Use in `transformers`
300
 
301
- ```py
302
- from transformers import AutoTokenizer, AutoModelForCausalLM
303
- import torch
304
 
305
- model_id = "meta-llama/Meta-Llama-Guard-2-8B"
306
- device = "cuda"
307
- dtype = torch.bfloat16
308
 
309
- tokenizer = AutoTokenizer.from_pretrained(model_id)
310
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device)
311
 
312
- def moderate(chat):
313
- input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
314
- output = model.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
315
- prompt_len = input_ids.shape[-1]
316
- return tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
317
 
318
- moderate([
319
- {"role": "user", "content": "I forgot how to kill a process in Linux, can you help?"},
320
- {"role": "assistant", "content": "Sure! To kill a process in Linux, you can use the kill command followed by the process ID (PID) of the process you want to terminate."},
321
- ])
322
- # `safe`
323
- ```
324
 
 
325
 
326
- # Training and Evaluation Data
327
 
328
- We start with the training set of Llama Guard (see [model card](https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard/MODEL_CARD.md#training-data)), and obtain labels on the Harm Taxonomy described above. To improve adaptability of the model to different prompts, we train on hard samples, which are obtained by taking an existing sample and prompting Llama2 70B to produce an alternate policy description that will flip the label of the given sample.
329
 
330
- We report metrics for various models and APIs on our validation set, which is obtained from combining the validation set of Llama Guard v1 and held-out samples from the additional Llama 3 safety data.
331
 
332
- We compare performance on our internal test set, as well as on open datasets like [XSTest](https://github.com/paul-rottger/exaggerated-safety?tab=readme-ov-file#license), [OpenAI moderation](https://github.com/openai/moderation-api-release), and [BeaverTails](https://github.com/PKU-Alignment/beavertails).
333
 
334
- We find that there is overlap between our training set and the BeaverTails-30k test split. Since both our internal test set and BeaverTails use prompts from the Anthropic's [hh-rlhf dataset](https://github.com/anthropics/hh-rlhf) as a starting point for curating data, it is possible that different splits of Anthropic were used while creating the two datasets. Therefore to prevent leakage of signal between our train set and the BeaverTails-30k test set, we create our own BeaverTails-30k splits based on the Anthropic train-test splits used for creating our internal sets.
335
 
336
- *Note on evaluations*: As discussed in the Llama Guard [paper](https://arxiv.org/abs/2312.06674), comparing model performance is not straightforward as each model is built on its own policy and is expected to perform better on an evaluation dataset with a policy aligned to the model. This highlights the need for industry standards. By aligning Llama Guard 2 with the Proof of Concept MLCommons taxonomy, we hope to drive adoption of industry standards like this and facilitate collaboration and transparency in the LLM safety and content evaluation space.
337
 
338
- # Model Performance
339
 
340
- We evaluate the performance of Llama Guard 2 and compare it with Llama Guard and popular content moderation APIs such as Azure, OpenAI Moderation, and Perspective. We use the token probability of the first output token (i.e. safe/unsafe) as the score for classification. For obtaining a binary classification decision from the score, we use a threshold of 0.5.
341
 
342
- Llama Guard 2 improves over Llama Guard, and outperforms other approaches on our internal test set. Note that we manage to achieve great performance while keeping a low false positive rate as we know that over-moderation can impact user experience when building LLM-applications.
343
- <div align="center">
344
 
345
- | **Model** | **F1 ↑** | **AUPRC ↑** | **False Positive<br>Rate ↓** |
346
- |--------------------------|:------:|:---------:|:-----------------------:|
347
- | Llama Guard\* | 0.665 | <ins>0.854</ins> | 0.027 |
348
- | Llama Guard 2 | **0.915** | **0.974** | 0.040 |
349
- | GPT4 | <ins>0.796</ins> | N/A | 0.151 |
350
- | OpenAI Moderation API | 0.347 | 0.669 | 0.030 |
351
- | Azure Content Safety API | 0.519 | N/A | 0.245 |
352
- | Perspective API | 0.265 | 0.586 | 0.046 |
353
 
 
354
 
355
- <small> Table 1: Comparison of performance of various approaches measured on our internal test set.
356
- <br><small><small>
357
- *The performance of Llama Guard is lower on our new test set due to expansion of the number of harm categories from 6 to 11, which is not aligned to what Llama Guard was trained on.
358
- </small></small></small>
359
- </div>
360
 
361
- <br>
362
 
363
- <div align="center">
364
 
365
- | **Category** | **False Negative Rate\* ↓** | **False Positive Rate ↓** |
366
- |------------------------|:--------------------------:|:-------------------------:|
367
- | Violent Crimes | 0.042 | 0.002 |
368
- | Privacy | 0.057 | 0.004 |
369
- | Non-Violent Crimes | 0.082 | 0.009 |
370
- | Intellectual Property | 0.099 | 0.004 |
371
- | Hate | 0.190 | 0.005 |
372
- | Specialized Advice | 0.192 | 0.009 |
373
- | Sexual Content | 0.229 | 0.004 |
374
- | Indiscriminate Weapons | 0.263 | 0.001 |
375
- | Child Exploitation | 0.267 | 0.000 |
376
- | Sex Crimes | 0.275 | 0.002 |
377
- | Self-Harm | 0.277 | 0.002 |
378
 
 
379
 
 
380
 
381
- <small> Table 2: Category-wise breakdown of false negative rate and false positive rate for Llama Guard 2 on our internal benchmark for response classification with safety labels from the ML Commons taxonomy.<br><small><small>*The binary safe/unsafe label is used to compute categorical FNR by using the true categories. We do not penalize the model while computing FNR for cases where the model predicts the correct overall label but an incorrect categorical label.</small></small></small>
382
 
383
- </div>
384
 
385
- We also report performance on OSS safety datasets, though we note that the policy used for assigning safety labels is not aligned with the policy used while training Llama Guard 2. Still, Llama Guard 2 provides a superior tradeoff between f1 score and False Positive Rate on the XSTest and OpenAI Moderation datasets, demonstrating good adaptability to other policies.
386
 
387
- The BeaverTails dataset has a lower bar for a sample to be considered unsafe compared to Llama Guard 2's policy. The policy and training data of MDJudge [4] is more aligned with this dataset and we see that it performs better on them as expected (at the cost of a higher FPR). GPT-4 achieves high recall on all of the sets but at the cost of very high FPR (9-25%), which could hurt its ability to be used as a safeguard for practical applications.
388
 
389
- <table align="center">
390
- <thead>
391
- <tr>
392
- <th></th>
393
- <th colspan="3">(F1 ↑ / False Positive Rate ↓)</th>
394
- </tr>
395
- </thead>
396
- <tbody>
397
- <tr>
398
- <td></td>
399
- <td><center>False Refusals<br>(XSTest)</center></td>
400
- <td><center>OpenAI policy<br>(OpenAI Mod)</center></td>
401
- <td><center>BeaverTails policy<br>(BeaverTails-30k)</center></td>
402
- </tr>
403
- <tr>
404
- <td>Llama Guard</td>
405
- <td>0.737 / 0.079</td>
406
- <td>0.737 / 0.079</td>
407
- <td>0.599 / 0.035</td>
408
- </tr>
409
- <tr>
410
- <td>Llama Guard 2</td>
411
- <td>0.884 / 0.084</td>
412
- <td>0.807 / 0.060</td>
413
- <td>0.736 / 0.059</td>
414
- </tr>
415
- <tr>
416
- <td>MDJudge</td>
417
- <td>0.856 / 0.172</td>
418
- <td>0.768 / 0.212</td>
419
- <td>0.849 / 0.098</td>
420
- </tr>
421
- <tr>
422
- <td>GPT4</td>
423
- <td>0.895 / 0.128</td>
424
- <td>0.842 / 0.092</td>
425
- <td>0.802 / 0.256</td>
426
- </tr>
427
- <tr>
428
- <td>OpenAI Mod API</td>
429
- <td>0.576 / 0.040</td>
430
- <td>0.788 / 0.156</td>
431
- <td>0.284 / 0.056</td>
432
- </tr>
433
- </tbody>
434
- </table>
435
-
436
- <div align="center">
437
- <small>Table 3: Comparison of performance of various approaches measured on our internal test set for response classification. <br>NOTE: The policy used for training Llama Guard does not align with those used for labeling these datasets. Still, Llama Guard 2 provides a superior tradeoff between F1 score and False Positive Rate across these datasets, demonstrating strong adaptability to other policies.</small>
438
- </div>
439
- <br>
440
- We hope to provide developers with a high-performing moderation solution for most use cases by aligning Llama Guard 2 taxonomy with MLCommons standard. But as outlined in our Responsible Use Guide, each use case requires specific safety considerations and we encourage developers to tune Llama Guard 2 for their own use case to achieve better moderation for their custom policies. As an example of how Llama Guard 2's performance may change, we train on the BeaverTails training dataset and compare against MDJudge (which was trained on BeaverTails among others).
441
-
442
-
443
- <div align="center">
444
- <br>
445
-
446
- | **Model** | **F1 ↑** | **False Positive Rate ↓** |
447
- |:---------------------------:|:--------:|:-------------------------:|
448
- | Llama Guard 2 | 0.736 | 0.059 |
449
- | MDJudge | <ins>0.849</ins> | 0.098 |
450
- | Llama Guard 2 + BeaverTails | **0.852** | 0.101 |
451
-
452
-
453
- <small>Table 4: Comparison of performance on BeaverTails-30k.</small>
454
- </div>
455
-
456
- # Limitations
457
-
458
- There are some limitations associated with Llama Guard 2. First, Llama Guard 2 itself is an LLM fine-tuned on Llama 3. Thus, its performance (e.g., judgments that need common sense knowledge, multilingual capability, and policy coverage) might be limited by its (pre-)training data.
459
-
460
- Second, Llama Guard 2 is finetuned for safety classification only (i.e. to generate "safe" or "unsafe"), and is not designed for chat use cases. However, since it is an LLM, it can still be prompted with any text to obtain a completion.
461
-
462
- Lastly, as an LLM, Llama Guard 2 may be susceptible to adversarial attacks or prompt injection attacks that could bypass or alter its intended use. However, with the help of external components (e.g., KNN, perplexity filter), recent work (e.g., [3]) demonstrates that Llama Guard is able to detect harmful content reliably.
463
-
464
- **Note on Llama Guard 2's policy**
465
-
466
- Llama Guard 2 supports 11 out of the 13 categories included in the [MLCommons AI Safety](https://mlcommons.org/working-groups/ai-safety/ai-safety/) taxonomy. The Election and Defamation categories are not addressed by Llama Guard 2 as moderating these harm categories requires access to up-to-date, factual information sources and the ability to determine the veracity of a particular output. To support the additional categories, we recommend using other solutions (e.g. Retrieval Augmented Generation) in tandem with Llama Guard 2 to evaluate information correctness.
467
-
468
- # Citation
469
-
470
- ```Bibtex
471
- @misc{metallamaguard2,
472
- author = {Felix Friedrich},
473
- title = {German Llama Guard 2},
474
- howpublished = {HF model at \url{https://huggingface.co/felfri/Llama-Guard-2-8B-German}},
475
- year = {2024}
476
- }
477
- ```
478
-
479
- ```Bibtex
480
- @misc{metallamaguard2,
481
- author = {Llama Team},
482
- title = {Meta Llama Guard 2},
483
- howpublished = {\url{https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md}},
484
- year = {2024}
485
- }
486
- ```
487
-
488
- # References
489
-
490
- [1] [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob)
491
-
492
- [2] [Llama Guard Model Card](https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard/MODEL_CARD.md)
493
-
494
- [3] [RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content](https://arxiv.org/pdf/2403.13031.pdf)
495
-
496
- [4] [MDJudge for Salad-Bench](https://huggingface.co/OpenSafetyLab/MD-Judge-v0.1)
 
1
  ---
2
+ library_name: transformers
3
+ tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
 
 
11
 
12
+ ## Model Details
 
13
 
14
+ ### Model Description
 
 
 
 
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
17
 
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
 
 
29
 
30
+ <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Direct Use
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
+ [More Information Needed]
45
 
46
+ ### Downstream Use [optional]
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
+ [More Information Needed]
51
 
52
+ ### Out-of-Scope Use
53
 
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
+ [More Information Needed]
57
 
58
+ ## Bias, Risks, and Limitations
59
 
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
+ [More Information Needed]
63
 
64
+ ### Recommendations
65
 
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
+ ## How to Get Started with the Model
71
 
72
+ Use the code below to get started with the model.
73
 
74
+ [More Information Needed]
75
 
76
+ ## Training Details
77
 
78
+ ### Training Data
79
 
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
+ [More Information Needed]
83
 
84
+ ### Training Procedure
85
 
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
+ #### Preprocessing [optional]
 
 
89
 
90
+ [More Information Needed]
 
91
 
 
 
 
 
 
92
 
93
+ #### Training Hyperparameters
 
 
 
 
 
94
 
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
+ #### Speeds, Sizes, Times [optional]
98
 
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
+ [More Information Needed]
102
 
103
+ ## Evaluation
104
 
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
+ ### Testing Data, Factors & Metrics
108
 
109
+ #### Testing Data
110
 
111
+ <!-- This should link to a Dataset Card if possible. -->
112
 
113
+ [More Information Needed]
 
114
 
115
+ #### Factors
 
 
 
 
 
 
 
116
 
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
+ [More Information Needed]
 
 
 
 
120
 
121
+ #### Metrics
122
 
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
+ [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
126
 
127
+ ### Results
128
 
129
+ [More Information Needed]
130
 
131
+ #### Summary
132
 
 
133
 
 
134
 
135
+ ## Model Examination [optional]
136
 
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "DiscoResearch/Llama3-German-8B",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128001,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 8192,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 500000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.41.2",
27
+ "use_cache": true,
28
+ "vocab_size": 128256
29
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": 128001,
5
+ "max_length": 4096,
6
+ "temperature": 0.6,
7
+ "top_p": 0.9,
8
+ "transformers_version": "4.41.2"
9
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f0c85cfd4df6323e9587117c2cc5a2f47522f3859daea18371660006de60b84
3
+ size 4976698672
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5de91f45886f7dcda39d1829ddcad90c714dff4207dcd9bb9c9c21d9ca29c2e6
3
+ size 4999802720
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9305c60fccf48b9d644aaba0df76e27a6de7ef3d200a5987ef1cf23fe4b93dc1
3
+ size 4915916176
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1111ce2ffdf4a81f9103859cbaec69b448d736695b6865c16838f32ba69d569b
3
+ size 1168138808
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }