fats-fme commited on
Commit
2d5c570
·
verified ·
1 Parent(s): 5dc773c

Training in progress, step 383, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama_v1.1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama_v1.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "gate_proj",
25
+ "v_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "q_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0478281c80879dab2603602a600e58f5dedf73b9a9a516870f45f62cc385b150
3
+ size 50503544
last-checkpoint/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6432bbbc79f5f28e5f1e8a3b125748b08eee9da3b7f4ff05fbace40dda74a61
3
+ size 101184122
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fd504756df2b2ca8d22381bb5e3d6fa500e4a401a95281ecd64d2ff70f1ac08
3
+ size 14512
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb791bad2ff08244429a256d23e100b5bf63d18eb832c5c582d28dcf25a7d81b
3
+ size 14512
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:138fcfba3da63d92d8ed678708f48cb2b52cdfa65f7f42f3b4a6e894860608fc
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
last-checkpoint/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,2730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.25020414829332027,
5
+ "eval_steps": 383,
6
+ "global_step": 383,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0006532745386248571,
13
+ "grad_norm": 6.782679973808308e+18,
14
+ "learning_rate": 4.000000000000001e-06,
15
+ "loss": 1.1939,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0006532745386248571,
20
+ "eval_loss": 2.101844310760498,
21
+ "eval_runtime": 159.9057,
22
+ "eval_samples_per_second": 16.122,
23
+ "eval_steps_per_second": 4.034,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0013065490772497142,
28
+ "grad_norm": 1.0602286061923074e+19,
29
+ "learning_rate": 8.000000000000001e-06,
30
+ "loss": 1.3265,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.0019598236158745713,
35
+ "grad_norm": 9.040893238818374e+18,
36
+ "learning_rate": 1.2e-05,
37
+ "loss": 1.2696,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.0026130981544994283,
42
+ "grad_norm": 8.791663639615504e+18,
43
+ "learning_rate": 1.6000000000000003e-05,
44
+ "loss": 1.4,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.0032663726931242854,
49
+ "grad_norm": 1.0141305916373336e+19,
50
+ "learning_rate": 2e-05,
51
+ "loss": 1.4178,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.0039196472317491425,
56
+ "grad_norm": 1.5361737647030534e+19,
57
+ "learning_rate": 2.4e-05,
58
+ "loss": 1.4652,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.004572921770374,
63
+ "grad_norm": 1.329169150346317e+19,
64
+ "learning_rate": 2.8000000000000003e-05,
65
+ "loss": 1.548,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.005226196308998857,
70
+ "grad_norm": 1.5421850146744304e+19,
71
+ "learning_rate": 3.2000000000000005e-05,
72
+ "loss": 1.5716,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.005879470847623714,
77
+ "grad_norm": Infinity,
78
+ "learning_rate": 3.6e-05,
79
+ "loss": 1.5789,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.006532745386248571,
84
+ "grad_norm": Infinity,
85
+ "learning_rate": 4e-05,
86
+ "loss": 1.6679,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.007186019924873428,
91
+ "grad_norm": Infinity,
92
+ "learning_rate": 4.4000000000000006e-05,
93
+ "loss": 1.7226,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.007839294463498285,
98
+ "grad_norm": Infinity,
99
+ "learning_rate": 4.8e-05,
100
+ "loss": 1.7121,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.008492569002123142,
105
+ "grad_norm": Infinity,
106
+ "learning_rate": 5.2000000000000004e-05,
107
+ "loss": 1.7012,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.009145843540748,
112
+ "grad_norm": Infinity,
113
+ "learning_rate": 5.6000000000000006e-05,
114
+ "loss": 1.8244,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.009799118079372856,
119
+ "grad_norm": Infinity,
120
+ "learning_rate": 6e-05,
121
+ "loss": 1.9075,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.010452392617997713,
126
+ "grad_norm": Infinity,
127
+ "learning_rate": 6.400000000000001e-05,
128
+ "loss": 2.2215,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.01110566715662257,
133
+ "grad_norm": Infinity,
134
+ "learning_rate": 6.800000000000001e-05,
135
+ "loss": 2.3717,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.011758941695247428,
140
+ "grad_norm": Infinity,
141
+ "learning_rate": 7.2e-05,
142
+ "loss": 2.5005,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.012412216233872285,
147
+ "grad_norm": Infinity,
148
+ "learning_rate": 7.6e-05,
149
+ "loss": 2.5937,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.013065490772497142,
154
+ "grad_norm": Infinity,
155
+ "learning_rate": 8e-05,
156
+ "loss": 2.4281,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.013718765311121999,
161
+ "grad_norm": Infinity,
162
+ "learning_rate": 8.4e-05,
163
+ "loss": 2.8442,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.014372039849746856,
168
+ "grad_norm": Infinity,
169
+ "learning_rate": 8.800000000000001e-05,
170
+ "loss": 2.6257,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.015025314388371713,
175
+ "grad_norm": Infinity,
176
+ "learning_rate": 9.200000000000001e-05,
177
+ "loss": 3.0521,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.01567858892699657,
182
+ "grad_norm": Infinity,
183
+ "learning_rate": 9.6e-05,
184
+ "loss": 3.4209,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.01633186346562143,
189
+ "grad_norm": Infinity,
190
+ "learning_rate": 0.0001,
191
+ "loss": 4.3767,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.016985138004246284,
196
+ "grad_norm": 1.6052595987134284e+19,
197
+ "learning_rate": 0.00010400000000000001,
198
+ "loss": 1.2769,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.017638412542871143,
203
+ "grad_norm": 1.6565584132189454e+19,
204
+ "learning_rate": 0.00010800000000000001,
205
+ "loss": 1.3066,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.018291687081496,
210
+ "grad_norm": Infinity,
211
+ "learning_rate": 0.00011200000000000001,
212
+ "loss": 1.3591,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.018944961620120857,
217
+ "grad_norm": Infinity,
218
+ "learning_rate": 0.000116,
219
+ "loss": 1.4514,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.019598236158745713,
224
+ "grad_norm": Infinity,
225
+ "learning_rate": 0.00012,
226
+ "loss": 1.4569,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.02025151069737057,
231
+ "grad_norm": Infinity,
232
+ "learning_rate": 0.000124,
233
+ "loss": 1.4416,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.020904785235995427,
238
+ "grad_norm": Infinity,
239
+ "learning_rate": 0.00012800000000000002,
240
+ "loss": 1.5548,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.021558059774620286,
245
+ "grad_norm": Infinity,
246
+ "learning_rate": 0.000132,
247
+ "loss": 1.4983,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.02221133431324514,
252
+ "grad_norm": Infinity,
253
+ "learning_rate": 0.00013600000000000003,
254
+ "loss": 1.5397,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.02286460885187,
259
+ "grad_norm": Infinity,
260
+ "learning_rate": 0.00014,
261
+ "loss": 1.5866,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.023517883390494855,
266
+ "grad_norm": Infinity,
267
+ "learning_rate": 0.000144,
268
+ "loss": 1.7101,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.024171157929119714,
273
+ "grad_norm": Infinity,
274
+ "learning_rate": 0.000148,
275
+ "loss": 1.7309,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.02482443246774457,
280
+ "grad_norm": Infinity,
281
+ "learning_rate": 0.000152,
282
+ "loss": 1.8801,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.025477707006369428,
287
+ "grad_norm": Infinity,
288
+ "learning_rate": 0.00015600000000000002,
289
+ "loss": 1.9034,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.026130981544994283,
294
+ "grad_norm": Infinity,
295
+ "learning_rate": 0.00016,
296
+ "loss": 1.8048,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.026784256083619142,
301
+ "grad_norm": Infinity,
302
+ "learning_rate": 0.000164,
303
+ "loss": 2.1254,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.027437530622243998,
308
+ "grad_norm": Infinity,
309
+ "learning_rate": 0.000168,
310
+ "loss": 2.3971,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.028090805160868856,
315
+ "grad_norm": Infinity,
316
+ "learning_rate": 0.000172,
317
+ "loss": 2.7006,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.02874407969949371,
322
+ "grad_norm": Infinity,
323
+ "learning_rate": 0.00017600000000000002,
324
+ "loss": 2.474,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.02939735423811857,
329
+ "grad_norm": Infinity,
330
+ "learning_rate": 0.00018,
331
+ "loss": 2.9188,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.030050628776743426,
336
+ "grad_norm": Infinity,
337
+ "learning_rate": 0.00018400000000000003,
338
+ "loss": 3.0924,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.030703903315368285,
343
+ "grad_norm": Infinity,
344
+ "learning_rate": 0.000188,
345
+ "loss": 3.0522,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.03135717785399314,
350
+ "grad_norm": Infinity,
351
+ "learning_rate": 0.000192,
352
+ "loss": 3.1227,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.032010452392617995,
357
+ "grad_norm": Infinity,
358
+ "learning_rate": 0.000196,
359
+ "loss": 3.6011,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.03266372693124286,
364
+ "grad_norm": Infinity,
365
+ "learning_rate": 0.0002,
366
+ "loss": 4.8325,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.03331700146986771,
371
+ "grad_norm": Infinity,
372
+ "learning_rate": 0.00019999977470780007,
373
+ "loss": 1.2339,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.03397027600849257,
378
+ "grad_norm": Infinity,
379
+ "learning_rate": 0.00019999909883221535,
380
+ "loss": 1.3726,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.034623550547117424,
385
+ "grad_norm": Infinity,
386
+ "learning_rate": 0.0001999979723762913,
387
+ "loss": 1.4039,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.035276825085742286,
392
+ "grad_norm": Infinity,
393
+ "learning_rate": 0.00019999639534510347,
394
+ "loss": 1.3955,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.03593009962436714,
399
+ "grad_norm": Infinity,
400
+ "learning_rate": 0.0001999943677457578,
401
+ "loss": 1.4902,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.036583374162992,
406
+ "grad_norm": Infinity,
407
+ "learning_rate": 0.00019999188958739027,
408
+ "loss": 1.4463,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.03723664870161685,
413
+ "grad_norm": Infinity,
414
+ "learning_rate": 0.00019998896088116715,
415
+ "loss": 1.5482,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.037889923240241714,
420
+ "grad_norm": Infinity,
421
+ "learning_rate": 0.00019998558164028465,
422
+ "loss": 1.5274,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.03854319777886657,
427
+ "grad_norm": Infinity,
428
+ "learning_rate": 0.00019998175187996916,
429
+ "loss": 1.5272,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.039196472317491425,
434
+ "grad_norm": Infinity,
435
+ "learning_rate": 0.00019997747161747695,
436
+ "loss": 1.7031,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.03984974685611628,
441
+ "grad_norm": Infinity,
442
+ "learning_rate": 0.00019997274087209423,
443
+ "loss": 1.6404,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.04050302139474114,
448
+ "grad_norm": Infinity,
449
+ "learning_rate": 0.000199967559665137,
450
+ "loss": 1.8366,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.041156295933366,
455
+ "grad_norm": Infinity,
456
+ "learning_rate": 0.00019996192801995097,
457
+ "loss": 1.8651,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.04180957047199085,
462
+ "grad_norm": Infinity,
463
+ "learning_rate": 0.00019995584596191145,
464
+ "loss": 1.9868,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.04246284501061571,
469
+ "grad_norm": Infinity,
470
+ "learning_rate": 0.00019994931351842327,
471
+ "loss": 2.0719,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.04311611954924057,
476
+ "grad_norm": Infinity,
477
+ "learning_rate": 0.00019994233071892056,
478
+ "loss": 2.1893,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.043769394087865426,
483
+ "grad_norm": Infinity,
484
+ "learning_rate": 0.00019993489759486673,
485
+ "loss": 2.3754,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.04442266862649028,
490
+ "grad_norm": Infinity,
491
+ "learning_rate": 0.00019992701417975427,
492
+ "loss": 2.4019,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.04507594316511514,
497
+ "grad_norm": Infinity,
498
+ "learning_rate": 0.0001999186805091047,
499
+ "loss": 2.5356,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.04572921770374,
504
+ "grad_norm": Infinity,
505
+ "learning_rate": 0.00019990989662046818,
506
+ "loss": 2.8341,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.046382492242364855,
511
+ "grad_norm": Infinity,
512
+ "learning_rate": 0.00019990066255342348,
513
+ "loss": 3.1333,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.04703576678098971,
518
+ "grad_norm": Infinity,
519
+ "learning_rate": 0.00019989097834957799,
520
+ "loss": 2.9525,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.047689041319614565,
525
+ "grad_norm": Infinity,
526
+ "learning_rate": 0.00019988084405256714,
527
+ "loss": 3.3206,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.04834231585823943,
532
+ "grad_norm": Infinity,
533
+ "learning_rate": 0.00019987025970805448,
534
+ "loss": 3.5856,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.04899559039686428,
539
+ "grad_norm": Infinity,
540
+ "learning_rate": 0.00019985922536373146,
541
+ "loss": 3.9854,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.04964886493548914,
546
+ "grad_norm": Infinity,
547
+ "learning_rate": 0.00019984774106931714,
548
+ "loss": 1.2761,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.050302139474113994,
553
+ "grad_norm": Infinity,
554
+ "learning_rate": 0.0001998358068765579,
555
+ "loss": 1.426,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.050955414012738856,
560
+ "grad_norm": Infinity,
561
+ "learning_rate": 0.00019982342283922738,
562
+ "loss": 1.4982,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.05160868855136371,
567
+ "grad_norm": Infinity,
568
+ "learning_rate": 0.00019981058901312606,
569
+ "loss": 1.4369,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.05226196308998857,
574
+ "grad_norm": Infinity,
575
+ "learning_rate": 0.00019979730545608126,
576
+ "loss": 1.4131,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.05291523762861342,
581
+ "grad_norm": Infinity,
582
+ "learning_rate": 0.00019978357222794654,
583
+ "loss": 1.4518,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.053568512167238284,
588
+ "grad_norm": Infinity,
589
+ "learning_rate": 0.00019976938939060172,
590
+ "loss": 1.5077,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.05422178670586314,
595
+ "grad_norm": Infinity,
596
+ "learning_rate": 0.00019975475700795246,
597
+ "loss": 1.5611,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.054875061244487995,
602
+ "grad_norm": Infinity,
603
+ "learning_rate": 0.00019973967514592996,
604
+ "loss": 1.467,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.05552833578311285,
609
+ "grad_norm": Infinity,
610
+ "learning_rate": 0.00019972414387249072,
611
+ "loss": 1.5768,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.05618161032173771,
616
+ "grad_norm": Infinity,
617
+ "learning_rate": 0.00019970816325761627,
618
+ "loss": 1.6242,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.05683488486036257,
623
+ "grad_norm": Infinity,
624
+ "learning_rate": 0.0001996917333733128,
625
+ "loss": 1.7764,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.05748815939898742,
630
+ "grad_norm": Infinity,
631
+ "learning_rate": 0.00019967485429361076,
632
+ "loss": 1.8326,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.05814143393761228,
637
+ "grad_norm": Infinity,
638
+ "learning_rate": 0.00019965752609456464,
639
+ "loss": 1.8779,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.05879470847623714,
644
+ "grad_norm": Infinity,
645
+ "learning_rate": 0.00019963974885425266,
646
+ "loss": 2.1007,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.059447983014861996,
651
+ "grad_norm": Infinity,
652
+ "learning_rate": 0.00019962152265277623,
653
+ "loss": 2.2433,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.06010125755348685,
658
+ "grad_norm": Infinity,
659
+ "learning_rate": 0.0001996028475722598,
660
+ "loss": 2.2192,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.06075453209211171,
665
+ "grad_norm": Infinity,
666
+ "learning_rate": 0.00019958372369685033,
667
+ "loss": 2.1113,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.06140780663073657,
672
+ "grad_norm": Infinity,
673
+ "learning_rate": 0.00019956415111271712,
674
+ "loss": 2.6662,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.062061081169361425,
679
+ "grad_norm": Infinity,
680
+ "learning_rate": 0.00019954412990805107,
681
+ "loss": 2.7781,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.06271435570798628,
686
+ "grad_norm": Infinity,
687
+ "learning_rate": 0.00019952366017306466,
688
+ "loss": 2.7183,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.06336763024661114,
693
+ "grad_norm": Infinity,
694
+ "learning_rate": 0.00019950274199999132,
695
+ "loss": 2.7068,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.06402090478523599,
700
+ "grad_norm": Infinity,
701
+ "learning_rate": 0.00019948137548308502,
702
+ "loss": 3.1326,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.06467417932386085,
707
+ "grad_norm": Infinity,
708
+ "learning_rate": 0.00019945956071862003,
709
+ "loss": 3.1585,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.06532745386248572,
714
+ "grad_norm": Infinity,
715
+ "learning_rate": 0.00019943729780489027,
716
+ "loss": 4.3935,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.06598072840111056,
721
+ "grad_norm": Infinity,
722
+ "learning_rate": 0.0001994145868422089,
723
+ "loss": 1.3574,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.06663400293973543,
728
+ "grad_norm": Infinity,
729
+ "learning_rate": 0.00019939142793290798,
730
+ "loss": 1.3933,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.06728727747836027,
735
+ "grad_norm": Infinity,
736
+ "learning_rate": 0.000199367821181338,
737
+ "loss": 1.4518,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.06794055201698514,
742
+ "grad_norm": Infinity,
743
+ "learning_rate": 0.00019934376669386727,
744
+ "loss": 1.3938,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.06859382655561,
749
+ "grad_norm": Infinity,
750
+ "learning_rate": 0.00019931926457888156,
751
+ "loss": 1.4311,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.06924710109423485,
756
+ "grad_norm": Infinity,
757
+ "learning_rate": 0.00019929431494678356,
758
+ "loss": 1.4887,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.06990037563285971,
763
+ "grad_norm": Infinity,
764
+ "learning_rate": 0.00019926891790999243,
765
+ "loss": 1.5323,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.07055365017148457,
770
+ "grad_norm": Infinity,
771
+ "learning_rate": 0.00019924307358294322,
772
+ "loss": 1.5969,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.07120692471010942,
777
+ "grad_norm": Infinity,
778
+ "learning_rate": 0.00019921678208208654,
779
+ "loss": 1.5895,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.07186019924873428,
784
+ "grad_norm": Infinity,
785
+ "learning_rate": 0.00019919004352588767,
786
+ "loss": 1.5687,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.07251347378735913,
791
+ "grad_norm": Infinity,
792
+ "learning_rate": 0.00019916285803482647,
793
+ "loss": 1.7395,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.073166748325984,
798
+ "grad_norm": Infinity,
799
+ "learning_rate": 0.0001991352257313965,
800
+ "loss": 1.8653,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.07382002286460886,
805
+ "grad_norm": Infinity,
806
+ "learning_rate": 0.00019910714674010454,
807
+ "loss": 1.8805,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.0744732974032337,
812
+ "grad_norm": Infinity,
813
+ "learning_rate": 0.00019907862118747022,
814
+ "loss": 1.9816,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.07512657194185857,
819
+ "grad_norm": Infinity,
820
+ "learning_rate": 0.0001990496492020252,
821
+ "loss": 2.0509,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.07577984648048343,
826
+ "grad_norm": Infinity,
827
+ "learning_rate": 0.0001990202309143127,
828
+ "loss": 2.2874,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.07643312101910828,
833
+ "grad_norm": Infinity,
834
+ "learning_rate": 0.000198990366456887,
835
+ "loss": 2.2876,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.07708639555773314,
840
+ "grad_norm": Infinity,
841
+ "learning_rate": 0.00019896005596431264,
842
+ "loss": 2.5601,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.07773967009635799,
847
+ "grad_norm": Infinity,
848
+ "learning_rate": 0.00019892929957316397,
849
+ "loss": 2.3229,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.07839294463498285,
854
+ "grad_norm": Infinity,
855
+ "learning_rate": 0.00019889809742202455,
856
+ "loss": 2.4374,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.07904621917360771,
861
+ "grad_norm": Infinity,
862
+ "learning_rate": 0.0001988664496514863,
863
+ "loss": 2.6645,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.07969949371223256,
868
+ "grad_norm": Infinity,
869
+ "learning_rate": 0.00019883435640414922,
870
+ "loss": 2.954,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.08035276825085742,
875
+ "grad_norm": Infinity,
876
+ "learning_rate": 0.0001988018178246205,
877
+ "loss": 3.252,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.08100604278948229,
882
+ "grad_norm": Infinity,
883
+ "learning_rate": 0.00019876883405951377,
884
+ "loss": 3.2595,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.08165931732810713,
889
+ "grad_norm": Infinity,
890
+ "learning_rate": 0.00019873540525744887,
891
+ "loss": 4.0661,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.082312591866732,
896
+ "grad_norm": Infinity,
897
+ "learning_rate": 0.00019870153156905068,
898
+ "loss": 1.2808,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.08296586640535684,
903
+ "grad_norm": Infinity,
904
+ "learning_rate": 0.00019866721314694882,
905
+ "loss": 1.3348,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.0836191409439817,
910
+ "grad_norm": Infinity,
911
+ "learning_rate": 0.00019863245014577668,
912
+ "loss": 1.3889,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.08427241548260657,
917
+ "grad_norm": Infinity,
918
+ "learning_rate": 0.00019859724272217099,
919
+ "loss": 1.3553,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.08492569002123142,
924
+ "grad_norm": Infinity,
925
+ "learning_rate": 0.00019856159103477086,
926
+ "loss": 1.4116,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.08557896455985628,
931
+ "grad_norm": Infinity,
932
+ "learning_rate": 0.00019852549524421723,
933
+ "loss": 1.5371,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.08623223909848114,
938
+ "grad_norm": Infinity,
939
+ "learning_rate": 0.0001984889555131521,
940
+ "loss": 1.5529,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.08688551363710599,
945
+ "grad_norm": Infinity,
946
+ "learning_rate": 0.00019845197200621785,
947
+ "loss": 1.5542,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.08753878817573085,
952
+ "grad_norm": Infinity,
953
+ "learning_rate": 0.00019841454489005636,
954
+ "loss": 1.5355,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.0881920627143557,
959
+ "grad_norm": Infinity,
960
+ "learning_rate": 0.00019837667433330838,
961
+ "loss": 1.5569,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.08884533725298056,
966
+ "grad_norm": Infinity,
967
+ "learning_rate": 0.0001983383605066127,
968
+ "loss": 1.6497,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.08949861179160543,
973
+ "grad_norm": Infinity,
974
+ "learning_rate": 0.00019829960358260545,
975
+ "loss": 1.8195,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.09015188633023027,
980
+ "grad_norm": Infinity,
981
+ "learning_rate": 0.00019826040373591933,
982
+ "loss": 1.9526,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.09080516086885514,
987
+ "grad_norm": Infinity,
988
+ "learning_rate": 0.0001982207611431827,
989
+ "loss": 2.011,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.09145843540748,
994
+ "grad_norm": Infinity,
995
+ "learning_rate": 0.0001981806759830189,
996
+ "loss": 2.1913,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.09211170994610485,
1001
+ "grad_norm": Infinity,
1002
+ "learning_rate": 0.00019814014843604543,
1003
+ "loss": 2.1102,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.09276498448472971,
1008
+ "grad_norm": Infinity,
1009
+ "learning_rate": 0.00019809917868487308,
1010
+ "loss": 2.3621,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.09341825902335456,
1015
+ "grad_norm": Infinity,
1016
+ "learning_rate": 0.00019805776691410516,
1017
+ "loss": 2.2622,
1018
+ "step": 143
1019
+ },
1020
+ {
1021
+ "epoch": 0.09407153356197942,
1022
+ "grad_norm": Infinity,
1023
+ "learning_rate": 0.00019801591331033663,
1024
+ "loss": 2.7022,
1025
+ "step": 144
1026
+ },
1027
+ {
1028
+ "epoch": 0.09472480810060428,
1029
+ "grad_norm": Infinity,
1030
+ "learning_rate": 0.00019797361806215332,
1031
+ "loss": 2.9089,
1032
+ "step": 145
1033
+ },
1034
+ {
1035
+ "epoch": 0.09537808263922913,
1036
+ "grad_norm": Infinity,
1037
+ "learning_rate": 0.000197930881360131,
1038
+ "loss": 2.8431,
1039
+ "step": 146
1040
+ },
1041
+ {
1042
+ "epoch": 0.096031357177854,
1043
+ "grad_norm": Infinity,
1044
+ "learning_rate": 0.00019788770339683462,
1045
+ "loss": 3.0716,
1046
+ "step": 147
1047
+ },
1048
+ {
1049
+ "epoch": 0.09668463171647886,
1050
+ "grad_norm": Infinity,
1051
+ "learning_rate": 0.00019784408436681732,
1052
+ "loss": 2.9731,
1053
+ "step": 148
1054
+ },
1055
+ {
1056
+ "epoch": 0.0973379062551037,
1057
+ "grad_norm": Infinity,
1058
+ "learning_rate": 0.00019780002446661966,
1059
+ "loss": 3.4067,
1060
+ "step": 149
1061
+ },
1062
+ {
1063
+ "epoch": 0.09799118079372857,
1064
+ "grad_norm": Infinity,
1065
+ "learning_rate": 0.00019775552389476864,
1066
+ "loss": 4.0305,
1067
+ "step": 150
1068
+ },
1069
+ {
1070
+ "epoch": 0.09864445533235343,
1071
+ "grad_norm": Infinity,
1072
+ "learning_rate": 0.0001977105828517769,
1073
+ "loss": 1.3048,
1074
+ "step": 151
1075
+ },
1076
+ {
1077
+ "epoch": 0.09929772987097828,
1078
+ "grad_norm": Infinity,
1079
+ "learning_rate": 0.00019766520154014183,
1080
+ "loss": 1.3672,
1081
+ "step": 152
1082
+ },
1083
+ {
1084
+ "epoch": 0.09995100440960314,
1085
+ "grad_norm": Infinity,
1086
+ "learning_rate": 0.00019761938016434448,
1087
+ "loss": 1.3763,
1088
+ "step": 153
1089
+ },
1090
+ {
1091
+ "epoch": 0.10060427894822799,
1092
+ "grad_norm": Infinity,
1093
+ "learning_rate": 0.00019757311893084885,
1094
+ "loss": 1.3836,
1095
+ "step": 154
1096
+ },
1097
+ {
1098
+ "epoch": 0.10125755348685285,
1099
+ "grad_norm": Infinity,
1100
+ "learning_rate": 0.00019752641804810084,
1101
+ "loss": 1.4765,
1102
+ "step": 155
1103
+ },
1104
+ {
1105
+ "epoch": 0.10191082802547771,
1106
+ "grad_norm": Infinity,
1107
+ "learning_rate": 0.0001974792777265273,
1108
+ "loss": 1.6151,
1109
+ "step": 156
1110
+ },
1111
+ {
1112
+ "epoch": 0.10256410256410256,
1113
+ "grad_norm": Infinity,
1114
+ "learning_rate": 0.00019743169817853525,
1115
+ "loss": 1.5203,
1116
+ "step": 157
1117
+ },
1118
+ {
1119
+ "epoch": 0.10321737710272742,
1120
+ "grad_norm": Infinity,
1121
+ "learning_rate": 0.00019738367961851064,
1122
+ "loss": 1.5259,
1123
+ "step": 158
1124
+ },
1125
+ {
1126
+ "epoch": 0.10387065164135229,
1127
+ "grad_norm": Infinity,
1128
+ "learning_rate": 0.0001973352222628176,
1129
+ "loss": 1.6711,
1130
+ "step": 159
1131
+ },
1132
+ {
1133
+ "epoch": 0.10452392617997713,
1134
+ "grad_norm": Infinity,
1135
+ "learning_rate": 0.00019728632632979746,
1136
+ "loss": 1.7773,
1137
+ "step": 160
1138
+ },
1139
+ {
1140
+ "epoch": 0.105177200718602,
1141
+ "grad_norm": Infinity,
1142
+ "learning_rate": 0.00019723699203976766,
1143
+ "loss": 1.7367,
1144
+ "step": 161
1145
+ },
1146
+ {
1147
+ "epoch": 0.10583047525722684,
1148
+ "grad_norm": Infinity,
1149
+ "learning_rate": 0.0001971872196150208,
1150
+ "loss": 1.8355,
1151
+ "step": 162
1152
+ },
1153
+ {
1154
+ "epoch": 0.1064837497958517,
1155
+ "grad_norm": Infinity,
1156
+ "learning_rate": 0.00019713700927982372,
1157
+ "loss": 1.8341,
1158
+ "step": 163
1159
+ },
1160
+ {
1161
+ "epoch": 0.10713702433447657,
1162
+ "grad_norm": Infinity,
1163
+ "learning_rate": 0.0001970863612604162,
1164
+ "loss": 1.8942,
1165
+ "step": 164
1166
+ },
1167
+ {
1168
+ "epoch": 0.10779029887310142,
1169
+ "grad_norm": Infinity,
1170
+ "learning_rate": 0.0001970352757850105,
1171
+ "loss": 2.0185,
1172
+ "step": 165
1173
+ },
1174
+ {
1175
+ "epoch": 0.10844357341172628,
1176
+ "grad_norm": Infinity,
1177
+ "learning_rate": 0.00019698375308378974,
1178
+ "loss": 2.1895,
1179
+ "step": 166
1180
+ },
1181
+ {
1182
+ "epoch": 0.10909684795035114,
1183
+ "grad_norm": Infinity,
1184
+ "learning_rate": 0.0001969317933889071,
1185
+ "loss": 2.3008,
1186
+ "step": 167
1187
+ },
1188
+ {
1189
+ "epoch": 0.10975012248897599,
1190
+ "grad_norm": Infinity,
1191
+ "learning_rate": 0.00019687939693448494,
1192
+ "loss": 2.5866,
1193
+ "step": 168
1194
+ },
1195
+ {
1196
+ "epoch": 0.11040339702760085,
1197
+ "grad_norm": Infinity,
1198
+ "learning_rate": 0.0001968265639566135,
1199
+ "loss": 2.3347,
1200
+ "step": 169
1201
+ },
1202
+ {
1203
+ "epoch": 0.1110566715662257,
1204
+ "grad_norm": Infinity,
1205
+ "learning_rate": 0.0001967732946933499,
1206
+ "loss": 2.5208,
1207
+ "step": 170
1208
+ },
1209
+ {
1210
+ "epoch": 0.11170994610485056,
1211
+ "grad_norm": Infinity,
1212
+ "learning_rate": 0.00019671958938471715,
1213
+ "loss": 2.7925,
1214
+ "step": 171
1215
+ },
1216
+ {
1217
+ "epoch": 0.11236322064347543,
1218
+ "grad_norm": Infinity,
1219
+ "learning_rate": 0.000196665448272703,
1220
+ "loss": 3.3472,
1221
+ "step": 172
1222
+ },
1223
+ {
1224
+ "epoch": 0.11301649518210027,
1225
+ "grad_norm": Infinity,
1226
+ "learning_rate": 0.00019661087160125886,
1227
+ "loss": 3.157,
1228
+ "step": 173
1229
+ },
1230
+ {
1231
+ "epoch": 0.11366976972072514,
1232
+ "grad_norm": Infinity,
1233
+ "learning_rate": 0.00019655585961629867,
1234
+ "loss": 3.5798,
1235
+ "step": 174
1236
+ },
1237
+ {
1238
+ "epoch": 0.11432304425935,
1239
+ "grad_norm": Infinity,
1240
+ "learning_rate": 0.00019650041256569792,
1241
+ "loss": 4.4552,
1242
+ "step": 175
1243
+ },
1244
+ {
1245
+ "epoch": 0.11497631879797485,
1246
+ "grad_norm": Infinity,
1247
+ "learning_rate": 0.00019644453069929228,
1248
+ "loss": 1.1694,
1249
+ "step": 176
1250
+ },
1251
+ {
1252
+ "epoch": 0.11562959333659971,
1253
+ "grad_norm": Infinity,
1254
+ "learning_rate": 0.00019638821426887673,
1255
+ "loss": 1.3668,
1256
+ "step": 177
1257
+ },
1258
+ {
1259
+ "epoch": 0.11628286787522456,
1260
+ "grad_norm": Infinity,
1261
+ "learning_rate": 0.0001963314635282044,
1262
+ "loss": 1.4632,
1263
+ "step": 178
1264
+ },
1265
+ {
1266
+ "epoch": 0.11693614241384942,
1267
+ "grad_norm": Infinity,
1268
+ "learning_rate": 0.0001962742787329852,
1269
+ "loss": 1.4713,
1270
+ "step": 179
1271
+ },
1272
+ {
1273
+ "epoch": 0.11758941695247428,
1274
+ "grad_norm": Infinity,
1275
+ "learning_rate": 0.00019621666014088494,
1276
+ "loss": 1.4127,
1277
+ "step": 180
1278
+ },
1279
+ {
1280
+ "epoch": 0.11824269149109913,
1281
+ "grad_norm": Infinity,
1282
+ "learning_rate": 0.00019615860801152398,
1283
+ "loss": 1.5774,
1284
+ "step": 181
1285
+ },
1286
+ {
1287
+ "epoch": 0.11889596602972399,
1288
+ "grad_norm": Infinity,
1289
+ "learning_rate": 0.00019610012260647618,
1290
+ "loss": 1.4787,
1291
+ "step": 182
1292
+ },
1293
+ {
1294
+ "epoch": 0.11954924056834886,
1295
+ "grad_norm": Infinity,
1296
+ "learning_rate": 0.00019604120418926764,
1297
+ "loss": 1.6504,
1298
+ "step": 183
1299
+ },
1300
+ {
1301
+ "epoch": 0.1202025151069737,
1302
+ "grad_norm": Infinity,
1303
+ "learning_rate": 0.00019598185302537556,
1304
+ "loss": 1.6627,
1305
+ "step": 184
1306
+ },
1307
+ {
1308
+ "epoch": 0.12085578964559857,
1309
+ "grad_norm": Infinity,
1310
+ "learning_rate": 0.00019592206938222703,
1311
+ "loss": 1.7108,
1312
+ "step": 185
1313
+ },
1314
+ {
1315
+ "epoch": 0.12150906418422341,
1316
+ "grad_norm": Infinity,
1317
+ "learning_rate": 0.0001958618535291978,
1318
+ "loss": 1.7505,
1319
+ "step": 186
1320
+ },
1321
+ {
1322
+ "epoch": 0.12216233872284828,
1323
+ "grad_norm": Infinity,
1324
+ "learning_rate": 0.00019580120573761112,
1325
+ "loss": 1.7437,
1326
+ "step": 187
1327
+ },
1328
+ {
1329
+ "epoch": 0.12281561326147314,
1330
+ "grad_norm": Infinity,
1331
+ "learning_rate": 0.00019574012628073648,
1332
+ "loss": 1.7792,
1333
+ "step": 188
1334
+ },
1335
+ {
1336
+ "epoch": 0.12346888780009799,
1337
+ "grad_norm": Infinity,
1338
+ "learning_rate": 0.00019567861543378837,
1339
+ "loss": 1.6856,
1340
+ "step": 189
1341
+ },
1342
+ {
1343
+ "epoch": 0.12412216233872285,
1344
+ "grad_norm": Infinity,
1345
+ "learning_rate": 0.00019561667347392508,
1346
+ "loss": 2.2671,
1347
+ "step": 190
1348
+ },
1349
+ {
1350
+ "epoch": 0.12477543687734771,
1351
+ "grad_norm": Infinity,
1352
+ "learning_rate": 0.00019555430068024748,
1353
+ "loss": 2.0929,
1354
+ "step": 191
1355
+ },
1356
+ {
1357
+ "epoch": 0.12542871141597256,
1358
+ "grad_norm": Infinity,
1359
+ "learning_rate": 0.00019549149733379755,
1360
+ "loss": 2.4075,
1361
+ "step": 192
1362
+ },
1363
+ {
1364
+ "epoch": 0.1260819859545974,
1365
+ "grad_norm": Infinity,
1366
+ "learning_rate": 0.00019542826371755743,
1367
+ "loss": 2.4512,
1368
+ "step": 193
1369
+ },
1370
+ {
1371
+ "epoch": 0.12673526049322228,
1372
+ "grad_norm": Infinity,
1373
+ "learning_rate": 0.0001953646001164479,
1374
+ "loss": 2.6113,
1375
+ "step": 194
1376
+ },
1377
+ {
1378
+ "epoch": 0.12738853503184713,
1379
+ "grad_norm": Infinity,
1380
+ "learning_rate": 0.0001953005068173272,
1381
+ "loss": 2.7185,
1382
+ "step": 195
1383
+ },
1384
+ {
1385
+ "epoch": 0.12804180957047198,
1386
+ "grad_norm": Infinity,
1387
+ "learning_rate": 0.0001952359841089898,
1388
+ "loss": 2.7951,
1389
+ "step": 196
1390
+ },
1391
+ {
1392
+ "epoch": 0.12869508410909686,
1393
+ "grad_norm": Infinity,
1394
+ "learning_rate": 0.00019517103228216493,
1395
+ "loss": 2.7111,
1396
+ "step": 197
1397
+ },
1398
+ {
1399
+ "epoch": 0.1293483586477217,
1400
+ "grad_norm": Infinity,
1401
+ "learning_rate": 0.00019510565162951537,
1402
+ "loss": 2.8432,
1403
+ "step": 198
1404
+ },
1405
+ {
1406
+ "epoch": 0.13000163318634655,
1407
+ "grad_norm": Infinity,
1408
+ "learning_rate": 0.00019503984244563616,
1409
+ "loss": 3.8419,
1410
+ "step": 199
1411
+ },
1412
+ {
1413
+ "epoch": 0.13065490772497143,
1414
+ "grad_norm": Infinity,
1415
+ "learning_rate": 0.0001949736050270532,
1416
+ "loss": 4.3049,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 0.13130818226359628,
1421
+ "grad_norm": Infinity,
1422
+ "learning_rate": 0.00019490693967222199,
1423
+ "loss": 1.308,
1424
+ "step": 201
1425
+ },
1426
+ {
1427
+ "epoch": 0.13196145680222113,
1428
+ "grad_norm": Infinity,
1429
+ "learning_rate": 0.00019483984668152617,
1430
+ "loss": 1.2917,
1431
+ "step": 202
1432
+ },
1433
+ {
1434
+ "epoch": 0.132614731340846,
1435
+ "grad_norm": Infinity,
1436
+ "learning_rate": 0.00019477232635727637,
1437
+ "loss": 1.47,
1438
+ "step": 203
1439
+ },
1440
+ {
1441
+ "epoch": 0.13326800587947085,
1442
+ "grad_norm": Infinity,
1443
+ "learning_rate": 0.00019470437900370857,
1444
+ "loss": 1.3956,
1445
+ "step": 204
1446
+ },
1447
+ {
1448
+ "epoch": 0.1339212804180957,
1449
+ "grad_norm": Infinity,
1450
+ "learning_rate": 0.00019463600492698296,
1451
+ "loss": 1.4451,
1452
+ "step": 205
1453
+ },
1454
+ {
1455
+ "epoch": 0.13457455495672055,
1456
+ "grad_norm": Infinity,
1457
+ "learning_rate": 0.00019456720443518247,
1458
+ "loss": 1.45,
1459
+ "step": 206
1460
+ },
1461
+ {
1462
+ "epoch": 0.13522782949534543,
1463
+ "grad_norm": Infinity,
1464
+ "learning_rate": 0.0001944979778383114,
1465
+ "loss": 1.5642,
1466
+ "step": 207
1467
+ },
1468
+ {
1469
+ "epoch": 0.13588110403397027,
1470
+ "grad_norm": Infinity,
1471
+ "learning_rate": 0.00019442832544829398,
1472
+ "loss": 1.4935,
1473
+ "step": 208
1474
+ },
1475
+ {
1476
+ "epoch": 0.13653437857259512,
1477
+ "grad_norm": Infinity,
1478
+ "learning_rate": 0.000194358247578973,
1479
+ "loss": 1.6163,
1480
+ "step": 209
1481
+ },
1482
+ {
1483
+ "epoch": 0.13718765311122,
1484
+ "grad_norm": Infinity,
1485
+ "learning_rate": 0.00019428774454610843,
1486
+ "loss": 1.6751,
1487
+ "step": 210
1488
+ },
1489
+ {
1490
+ "epoch": 0.13784092764984485,
1491
+ "grad_norm": Infinity,
1492
+ "learning_rate": 0.00019421681666737594,
1493
+ "loss": 1.714,
1494
+ "step": 211
1495
+ },
1496
+ {
1497
+ "epoch": 0.1384942021884697,
1498
+ "grad_norm": Infinity,
1499
+ "learning_rate": 0.00019414546426236543,
1500
+ "loss": 1.8134,
1501
+ "step": 212
1502
+ },
1503
+ {
1504
+ "epoch": 0.13914747672709457,
1505
+ "grad_norm": Infinity,
1506
+ "learning_rate": 0.00019407368765257977,
1507
+ "loss": 1.7647,
1508
+ "step": 213
1509
+ },
1510
+ {
1511
+ "epoch": 0.13980075126571942,
1512
+ "grad_norm": Infinity,
1513
+ "learning_rate": 0.00019400148716143317,
1514
+ "loss": 1.8783,
1515
+ "step": 214
1516
+ },
1517
+ {
1518
+ "epoch": 0.14045402580434427,
1519
+ "grad_norm": Infinity,
1520
+ "learning_rate": 0.00019392886311424973,
1521
+ "loss": 1.9749,
1522
+ "step": 215
1523
+ },
1524
+ {
1525
+ "epoch": 0.14110730034296914,
1526
+ "grad_norm": Infinity,
1527
+ "learning_rate": 0.00019385581583826212,
1528
+ "loss": 2.1572,
1529
+ "step": 216
1530
+ },
1531
+ {
1532
+ "epoch": 0.141760574881594,
1533
+ "grad_norm": Infinity,
1534
+ "learning_rate": 0.00019378234566260995,
1535
+ "loss": 2.2505,
1536
+ "step": 217
1537
+ },
1538
+ {
1539
+ "epoch": 0.14241384942021884,
1540
+ "grad_norm": Infinity,
1541
+ "learning_rate": 0.00019370845291833837,
1542
+ "loss": 2.4754,
1543
+ "step": 218
1544
+ },
1545
+ {
1546
+ "epoch": 0.14306712395884372,
1547
+ "grad_norm": Infinity,
1548
+ "learning_rate": 0.00019363413793839658,
1549
+ "loss": 2.6163,
1550
+ "step": 219
1551
+ },
1552
+ {
1553
+ "epoch": 0.14372039849746857,
1554
+ "grad_norm": Infinity,
1555
+ "learning_rate": 0.0001935594010576362,
1556
+ "loss": 2.4796,
1557
+ "step": 220
1558
+ },
1559
+ {
1560
+ "epoch": 0.14437367303609341,
1561
+ "grad_norm": Infinity,
1562
+ "learning_rate": 0.0001934842426128101,
1563
+ "loss": 2.7531,
1564
+ "step": 221
1565
+ },
1566
+ {
1567
+ "epoch": 0.14502694757471826,
1568
+ "grad_norm": Infinity,
1569
+ "learning_rate": 0.00019340866294257042,
1570
+ "loss": 2.954,
1571
+ "step": 222
1572
+ },
1573
+ {
1574
+ "epoch": 0.14568022211334314,
1575
+ "grad_norm": Infinity,
1576
+ "learning_rate": 0.00019333266238746736,
1577
+ "loss": 2.8526,
1578
+ "step": 223
1579
+ },
1580
+ {
1581
+ "epoch": 0.146333496651968,
1582
+ "grad_norm": Infinity,
1583
+ "learning_rate": 0.0001932562412899476,
1584
+ "loss": 3.3364,
1585
+ "step": 224
1586
+ },
1587
+ {
1588
+ "epoch": 0.14698677119059284,
1589
+ "grad_norm": Infinity,
1590
+ "learning_rate": 0.0001931793999943526,
1591
+ "loss": 4.5349,
1592
+ "step": 225
1593
+ },
1594
+ {
1595
+ "epoch": 0.1476400457292177,
1596
+ "grad_norm": Infinity,
1597
+ "learning_rate": 0.0001931021388469174,
1598
+ "loss": 1.228,
1599
+ "step": 226
1600
+ },
1601
+ {
1602
+ "epoch": 0.14829332026784256,
1603
+ "grad_norm": Infinity,
1604
+ "learning_rate": 0.00019302445819576855,
1605
+ "loss": 1.3118,
1606
+ "step": 227
1607
+ },
1608
+ {
1609
+ "epoch": 0.1489465948064674,
1610
+ "grad_norm": Infinity,
1611
+ "learning_rate": 0.000192946358390923,
1612
+ "loss": 1.3919,
1613
+ "step": 228
1614
+ },
1615
+ {
1616
+ "epoch": 0.14959986934509228,
1617
+ "grad_norm": Infinity,
1618
+ "learning_rate": 0.00019286783978428624,
1619
+ "loss": 1.5169,
1620
+ "step": 229
1621
+ },
1622
+ {
1623
+ "epoch": 0.15025314388371713,
1624
+ "grad_norm": Infinity,
1625
+ "learning_rate": 0.00019278890272965096,
1626
+ "loss": 1.4527,
1627
+ "step": 230
1628
+ },
1629
+ {
1630
+ "epoch": 0.15090641842234198,
1631
+ "grad_norm": Infinity,
1632
+ "learning_rate": 0.00019270954758269512,
1633
+ "loss": 1.5709,
1634
+ "step": 231
1635
+ },
1636
+ {
1637
+ "epoch": 0.15155969296096686,
1638
+ "grad_norm": Infinity,
1639
+ "learning_rate": 0.00019262977470098065,
1640
+ "loss": 1.5521,
1641
+ "step": 232
1642
+ },
1643
+ {
1644
+ "epoch": 0.1522129674995917,
1645
+ "grad_norm": Infinity,
1646
+ "learning_rate": 0.00019254958444395173,
1647
+ "loss": 1.6832,
1648
+ "step": 233
1649
+ },
1650
+ {
1651
+ "epoch": 0.15286624203821655,
1652
+ "grad_norm": Infinity,
1653
+ "learning_rate": 0.00019246897717293315,
1654
+ "loss": 1.6709,
1655
+ "step": 234
1656
+ },
1657
+ {
1658
+ "epoch": 0.15351951657684143,
1659
+ "grad_norm": Infinity,
1660
+ "learning_rate": 0.0001923879532511287,
1661
+ "loss": 1.6955,
1662
+ "step": 235
1663
+ },
1664
+ {
1665
+ "epoch": 0.15417279111546628,
1666
+ "grad_norm": Infinity,
1667
+ "learning_rate": 0.0001923065130436195,
1668
+ "loss": 1.6892,
1669
+ "step": 236
1670
+ },
1671
+ {
1672
+ "epoch": 0.15482606565409113,
1673
+ "grad_norm": Infinity,
1674
+ "learning_rate": 0.00019222465691736247,
1675
+ "loss": 1.8645,
1676
+ "step": 237
1677
+ },
1678
+ {
1679
+ "epoch": 0.15547934019271598,
1680
+ "grad_norm": Infinity,
1681
+ "learning_rate": 0.0001921423852411885,
1682
+ "loss": 1.8915,
1683
+ "step": 238
1684
+ },
1685
+ {
1686
+ "epoch": 0.15613261473134085,
1687
+ "grad_norm": Infinity,
1688
+ "learning_rate": 0.00019205969838580094,
1689
+ "loss": 1.8416,
1690
+ "step": 239
1691
+ },
1692
+ {
1693
+ "epoch": 0.1567858892699657,
1694
+ "grad_norm": Infinity,
1695
+ "learning_rate": 0.0001919765967237739,
1696
+ "loss": 1.8057,
1697
+ "step": 240
1698
+ },
1699
+ {
1700
+ "epoch": 0.15743916380859055,
1701
+ "grad_norm": Infinity,
1702
+ "learning_rate": 0.00019189308062955043,
1703
+ "loss": 1.9947,
1704
+ "step": 241
1705
+ },
1706
+ {
1707
+ "epoch": 0.15809243834721542,
1708
+ "grad_norm": Infinity,
1709
+ "learning_rate": 0.00019180915047944112,
1710
+ "loss": 2.3449,
1711
+ "step": 242
1712
+ },
1713
+ {
1714
+ "epoch": 0.15874571288584027,
1715
+ "grad_norm": Infinity,
1716
+ "learning_rate": 0.000191724806651622,
1717
+ "loss": 2.4693,
1718
+ "step": 243
1719
+ },
1720
+ {
1721
+ "epoch": 0.15939898742446512,
1722
+ "grad_norm": Infinity,
1723
+ "learning_rate": 0.00019164004952613336,
1724
+ "loss": 2.3417,
1725
+ "step": 244
1726
+ },
1727
+ {
1728
+ "epoch": 0.16005226196309,
1729
+ "grad_norm": Infinity,
1730
+ "learning_rate": 0.00019155487948487748,
1731
+ "loss": 2.2969,
1732
+ "step": 245
1733
+ },
1734
+ {
1735
+ "epoch": 0.16070553650171485,
1736
+ "grad_norm": Infinity,
1737
+ "learning_rate": 0.00019146929691161727,
1738
+ "loss": 2.8115,
1739
+ "step": 246
1740
+ },
1741
+ {
1742
+ "epoch": 0.1613588110403397,
1743
+ "grad_norm": Infinity,
1744
+ "learning_rate": 0.0001913833021919745,
1745
+ "loss": 2.8346,
1746
+ "step": 247
1747
+ },
1748
+ {
1749
+ "epoch": 0.16201208557896457,
1750
+ "grad_norm": Infinity,
1751
+ "learning_rate": 0.00019129689571342797,
1752
+ "loss": 3.143,
1753
+ "step": 248
1754
+ },
1755
+ {
1756
+ "epoch": 0.16266536011758942,
1757
+ "grad_norm": Infinity,
1758
+ "learning_rate": 0.00019121007786531178,
1759
+ "loss": 3.4042,
1760
+ "step": 249
1761
+ },
1762
+ {
1763
+ "epoch": 0.16331863465621427,
1764
+ "grad_norm": Infinity,
1765
+ "learning_rate": 0.0001911228490388136,
1766
+ "loss": 3.7222,
1767
+ "step": 250
1768
+ },
1769
+ {
1770
+ "epoch": 0.16397190919483914,
1771
+ "grad_norm": Infinity,
1772
+ "learning_rate": 0.0001910352096269729,
1773
+ "loss": 1.2778,
1774
+ "step": 251
1775
+ },
1776
+ {
1777
+ "epoch": 0.164625183733464,
1778
+ "grad_norm": Infinity,
1779
+ "learning_rate": 0.00019094716002467918,
1780
+ "loss": 1.3826,
1781
+ "step": 252
1782
+ },
1783
+ {
1784
+ "epoch": 0.16527845827208884,
1785
+ "grad_norm": Infinity,
1786
+ "learning_rate": 0.0001908587006286703,
1787
+ "loss": 1.3929,
1788
+ "step": 253
1789
+ },
1790
+ {
1791
+ "epoch": 0.1659317328107137,
1792
+ "grad_norm": Infinity,
1793
+ "learning_rate": 0.00019076983183753045,
1794
+ "loss": 1.4139,
1795
+ "step": 254
1796
+ },
1797
+ {
1798
+ "epoch": 0.16658500734933857,
1799
+ "grad_norm": Infinity,
1800
+ "learning_rate": 0.0001906805540516885,
1801
+ "loss": 1.3002,
1802
+ "step": 255
1803
+ },
1804
+ {
1805
+ "epoch": 0.1672382818879634,
1806
+ "grad_norm": Infinity,
1807
+ "learning_rate": 0.00019059086767341627,
1808
+ "loss": 1.414,
1809
+ "step": 256
1810
+ },
1811
+ {
1812
+ "epoch": 0.16789155642658826,
1813
+ "grad_norm": Infinity,
1814
+ "learning_rate": 0.00019050077310682657,
1815
+ "loss": 1.6117,
1816
+ "step": 257
1817
+ },
1818
+ {
1819
+ "epoch": 0.16854483096521314,
1820
+ "grad_norm": Infinity,
1821
+ "learning_rate": 0.0001904102707578715,
1822
+ "loss": 1.5172,
1823
+ "step": 258
1824
+ },
1825
+ {
1826
+ "epoch": 0.169198105503838,
1827
+ "grad_norm": Infinity,
1828
+ "learning_rate": 0.00019031936103434044,
1829
+ "loss": 1.6757,
1830
+ "step": 259
1831
+ },
1832
+ {
1833
+ "epoch": 0.16985138004246284,
1834
+ "grad_norm": Infinity,
1835
+ "learning_rate": 0.00019022804434585852,
1836
+ "loss": 1.6502,
1837
+ "step": 260
1838
+ },
1839
+ {
1840
+ "epoch": 0.1705046545810877,
1841
+ "grad_norm": Infinity,
1842
+ "learning_rate": 0.00019013632110388446,
1843
+ "loss": 1.6107,
1844
+ "step": 261
1845
+ },
1846
+ {
1847
+ "epoch": 0.17115792911971256,
1848
+ "grad_norm": Infinity,
1849
+ "learning_rate": 0.00019004419172170887,
1850
+ "loss": 1.6386,
1851
+ "step": 262
1852
+ },
1853
+ {
1854
+ "epoch": 0.1718112036583374,
1855
+ "grad_norm": Infinity,
1856
+ "learning_rate": 0.00018995165661445234,
1857
+ "loss": 1.7794,
1858
+ "step": 263
1859
+ },
1860
+ {
1861
+ "epoch": 0.17246447819696228,
1862
+ "grad_norm": Infinity,
1863
+ "learning_rate": 0.0001898587161990637,
1864
+ "loss": 1.8321,
1865
+ "step": 264
1866
+ },
1867
+ {
1868
+ "epoch": 0.17311775273558713,
1869
+ "grad_norm": Infinity,
1870
+ "learning_rate": 0.0001897653708943179,
1871
+ "loss": 1.9069,
1872
+ "step": 265
1873
+ },
1874
+ {
1875
+ "epoch": 0.17377102727421198,
1876
+ "grad_norm": Infinity,
1877
+ "learning_rate": 0.00018967162112081438,
1878
+ "loss": 2.1029,
1879
+ "step": 266
1880
+ },
1881
+ {
1882
+ "epoch": 0.17442430181283686,
1883
+ "grad_norm": Infinity,
1884
+ "learning_rate": 0.00018957746730097495,
1885
+ "loss": 2.2505,
1886
+ "step": 267
1887
+ },
1888
+ {
1889
+ "epoch": 0.1750775763514617,
1890
+ "grad_norm": Infinity,
1891
+ "learning_rate": 0.00018948290985904204,
1892
+ "loss": 2.4312,
1893
+ "step": 268
1894
+ },
1895
+ {
1896
+ "epoch": 0.17573085089008655,
1897
+ "grad_norm": Infinity,
1898
+ "learning_rate": 0.00018938794922107675,
1899
+ "loss": 2.544,
1900
+ "step": 269
1901
+ },
1902
+ {
1903
+ "epoch": 0.1763841254287114,
1904
+ "grad_norm": Infinity,
1905
+ "learning_rate": 0.00018929258581495685,
1906
+ "loss": 2.8027,
1907
+ "step": 270
1908
+ },
1909
+ {
1910
+ "epoch": 0.17703739996733628,
1911
+ "grad_norm": Infinity,
1912
+ "learning_rate": 0.00018919682007037506,
1913
+ "loss": 2.7801,
1914
+ "step": 271
1915
+ },
1916
+ {
1917
+ "epoch": 0.17769067450596113,
1918
+ "grad_norm": Infinity,
1919
+ "learning_rate": 0.0001891006524188368,
1920
+ "loss": 3.1716,
1921
+ "step": 272
1922
+ },
1923
+ {
1924
+ "epoch": 0.17834394904458598,
1925
+ "grad_norm": Infinity,
1926
+ "learning_rate": 0.00018900408329365856,
1927
+ "loss": 2.8948,
1928
+ "step": 273
1929
+ },
1930
+ {
1931
+ "epoch": 0.17899722358321085,
1932
+ "grad_norm": Infinity,
1933
+ "learning_rate": 0.0001889071131299657,
1934
+ "loss": 3.2573,
1935
+ "step": 274
1936
+ },
1937
+ {
1938
+ "epoch": 0.1796504981218357,
1939
+ "grad_norm": Infinity,
1940
+ "learning_rate": 0.0001888097423646907,
1941
+ "loss": 4.1261,
1942
+ "step": 275
1943
+ },
1944
+ {
1945
+ "epoch": 0.18030377266046055,
1946
+ "grad_norm": Infinity,
1947
+ "learning_rate": 0.00018871197143657104,
1948
+ "loss": 1.2702,
1949
+ "step": 276
1950
+ },
1951
+ {
1952
+ "epoch": 0.18095704719908542,
1953
+ "grad_norm": Infinity,
1954
+ "learning_rate": 0.00018861380078614726,
1955
+ "loss": 1.3885,
1956
+ "step": 277
1957
+ },
1958
+ {
1959
+ "epoch": 0.18161032173771027,
1960
+ "grad_norm": Infinity,
1961
+ "learning_rate": 0.00018851523085576096,
1962
+ "loss": 1.3993,
1963
+ "step": 278
1964
+ },
1965
+ {
1966
+ "epoch": 0.18226359627633512,
1967
+ "grad_norm": Infinity,
1968
+ "learning_rate": 0.00018841626208955292,
1969
+ "loss": 1.3527,
1970
+ "step": 279
1971
+ },
1972
+ {
1973
+ "epoch": 0.18291687081496,
1974
+ "grad_norm": Infinity,
1975
+ "learning_rate": 0.00018831689493346095,
1976
+ "loss": 1.3832,
1977
+ "step": 280
1978
+ },
1979
+ {
1980
+ "epoch": 0.18357014535358485,
1981
+ "grad_norm": Infinity,
1982
+ "learning_rate": 0.0001882171298352179,
1983
+ "loss": 1.4736,
1984
+ "step": 281
1985
+ },
1986
+ {
1987
+ "epoch": 0.1842234198922097,
1988
+ "grad_norm": Infinity,
1989
+ "learning_rate": 0.00018811696724434983,
1990
+ "loss": 1.5195,
1991
+ "step": 282
1992
+ },
1993
+ {
1994
+ "epoch": 0.18487669443083457,
1995
+ "grad_norm": Infinity,
1996
+ "learning_rate": 0.00018801640761217367,
1997
+ "loss": 1.5279,
1998
+ "step": 283
1999
+ },
2000
+ {
2001
+ "epoch": 0.18552996896945942,
2002
+ "grad_norm": Infinity,
2003
+ "learning_rate": 0.00018791545139179548,
2004
+ "loss": 1.5788,
2005
+ "step": 284
2006
+ },
2007
+ {
2008
+ "epoch": 0.18618324350808427,
2009
+ "grad_norm": Infinity,
2010
+ "learning_rate": 0.00018781409903810821,
2011
+ "loss": 1.6494,
2012
+ "step": 285
2013
+ },
2014
+ {
2015
+ "epoch": 0.18683651804670912,
2016
+ "grad_norm": Infinity,
2017
+ "learning_rate": 0.0001877123510077898,
2018
+ "loss": 1.5504,
2019
+ "step": 286
2020
+ },
2021
+ {
2022
+ "epoch": 0.187489792585334,
2023
+ "grad_norm": Infinity,
2024
+ "learning_rate": 0.00018761020775930095,
2025
+ "loss": 1.7568,
2026
+ "step": 287
2027
+ },
2028
+ {
2029
+ "epoch": 0.18814306712395884,
2030
+ "grad_norm": Infinity,
2031
+ "learning_rate": 0.0001875076697528832,
2032
+ "loss": 1.8331,
2033
+ "step": 288
2034
+ },
2035
+ {
2036
+ "epoch": 0.1887963416625837,
2037
+ "grad_norm": Infinity,
2038
+ "learning_rate": 0.0001874047374505569,
2039
+ "loss": 1.8368,
2040
+ "step": 289
2041
+ },
2042
+ {
2043
+ "epoch": 0.18944961620120856,
2044
+ "grad_norm": Infinity,
2045
+ "learning_rate": 0.00018730141131611882,
2046
+ "loss": 1.9461,
2047
+ "step": 290
2048
+ },
2049
+ {
2050
+ "epoch": 0.1901028907398334,
2051
+ "grad_norm": Infinity,
2052
+ "learning_rate": 0.0001871976918151405,
2053
+ "loss": 2.0115,
2054
+ "step": 291
2055
+ },
2056
+ {
2057
+ "epoch": 0.19075616527845826,
2058
+ "grad_norm": Infinity,
2059
+ "learning_rate": 0.0001870935794149658,
2060
+ "loss": 2.0988,
2061
+ "step": 292
2062
+ },
2063
+ {
2064
+ "epoch": 0.19140943981708314,
2065
+ "grad_norm": Infinity,
2066
+ "learning_rate": 0.00018698907458470894,
2067
+ "loss": 2.4166,
2068
+ "step": 293
2069
+ },
2070
+ {
2071
+ "epoch": 0.192062714355708,
2072
+ "grad_norm": Infinity,
2073
+ "learning_rate": 0.0001868841777952524,
2074
+ "loss": 2.4735,
2075
+ "step": 294
2076
+ },
2077
+ {
2078
+ "epoch": 0.19271598889433283,
2079
+ "grad_norm": Infinity,
2080
+ "learning_rate": 0.00018677888951924474,
2081
+ "loss": 2.6137,
2082
+ "step": 295
2083
+ },
2084
+ {
2085
+ "epoch": 0.1933692634329577,
2086
+ "grad_norm": Infinity,
2087
+ "learning_rate": 0.0001866732102310985,
2088
+ "loss": 2.9701,
2089
+ "step": 296
2090
+ },
2091
+ {
2092
+ "epoch": 0.19402253797158256,
2093
+ "grad_norm": Infinity,
2094
+ "learning_rate": 0.0001865671404069881,
2095
+ "loss": 3.195,
2096
+ "step": 297
2097
+ },
2098
+ {
2099
+ "epoch": 0.1946758125102074,
2100
+ "grad_norm": Infinity,
2101
+ "learning_rate": 0.00018646068052484755,
2102
+ "loss": 3.4701,
2103
+ "step": 298
2104
+ },
2105
+ {
2106
+ "epoch": 0.19532908704883228,
2107
+ "grad_norm": Infinity,
2108
+ "learning_rate": 0.00018635383106436855,
2109
+ "loss": 3.0494,
2110
+ "step": 299
2111
+ },
2112
+ {
2113
+ "epoch": 0.19598236158745713,
2114
+ "grad_norm": Infinity,
2115
+ "learning_rate": 0.00018624659250699805,
2116
+ "loss": 3.8624,
2117
+ "step": 300
2118
+ },
2119
+ {
2120
+ "epoch": 0.19663563612608198,
2121
+ "grad_norm": Infinity,
2122
+ "learning_rate": 0.00018613896533593632,
2123
+ "loss": 1.318,
2124
+ "step": 301
2125
+ },
2126
+ {
2127
+ "epoch": 0.19728891066470686,
2128
+ "grad_norm": Infinity,
2129
+ "learning_rate": 0.0001860309500361345,
2130
+ "loss": 1.3523,
2131
+ "step": 302
2132
+ },
2133
+ {
2134
+ "epoch": 0.1979421852033317,
2135
+ "grad_norm": Infinity,
2136
+ "learning_rate": 0.0001859225470942928,
2137
+ "loss": 1.3658,
2138
+ "step": 303
2139
+ },
2140
+ {
2141
+ "epoch": 0.19859545974195655,
2142
+ "grad_norm": Infinity,
2143
+ "learning_rate": 0.00018581375699885786,
2144
+ "loss": 1.4371,
2145
+ "step": 304
2146
+ },
2147
+ {
2148
+ "epoch": 0.1992487342805814,
2149
+ "grad_norm": Infinity,
2150
+ "learning_rate": 0.00018570458024002093,
2151
+ "loss": 1.4728,
2152
+ "step": 305
2153
+ },
2154
+ {
2155
+ "epoch": 0.19990200881920628,
2156
+ "grad_norm": Infinity,
2157
+ "learning_rate": 0.00018559501730971544,
2158
+ "loss": 1.4962,
2159
+ "step": 306
2160
+ },
2161
+ {
2162
+ "epoch": 0.20055528335783113,
2163
+ "grad_norm": Infinity,
2164
+ "learning_rate": 0.00018548506870161492,
2165
+ "loss": 1.5558,
2166
+ "step": 307
2167
+ },
2168
+ {
2169
+ "epoch": 0.20120855789645598,
2170
+ "grad_norm": Infinity,
2171
+ "learning_rate": 0.00018537473491113054,
2172
+ "loss": 1.5558,
2173
+ "step": 308
2174
+ },
2175
+ {
2176
+ "epoch": 0.20186183243508085,
2177
+ "grad_norm": Infinity,
2178
+ "learning_rate": 0.00018526401643540922,
2179
+ "loss": 1.6514,
2180
+ "step": 309
2181
+ },
2182
+ {
2183
+ "epoch": 0.2025151069737057,
2184
+ "grad_norm": Infinity,
2185
+ "learning_rate": 0.00018515291377333112,
2186
+ "loss": 1.6654,
2187
+ "step": 310
2188
+ },
2189
+ {
2190
+ "epoch": 0.20316838151233055,
2191
+ "grad_norm": Infinity,
2192
+ "learning_rate": 0.00018504142742550755,
2193
+ "loss": 1.6443,
2194
+ "step": 311
2195
+ },
2196
+ {
2197
+ "epoch": 0.20382165605095542,
2198
+ "grad_norm": Infinity,
2199
+ "learning_rate": 0.0001849295578942785,
2200
+ "loss": 1.7981,
2201
+ "step": 312
2202
+ },
2203
+ {
2204
+ "epoch": 0.20447493058958027,
2205
+ "grad_norm": Infinity,
2206
+ "learning_rate": 0.00018481730568371073,
2207
+ "loss": 2.0421,
2208
+ "step": 313
2209
+ },
2210
+ {
2211
+ "epoch": 0.20512820512820512,
2212
+ "grad_norm": Infinity,
2213
+ "learning_rate": 0.0001847046712995951,
2214
+ "loss": 1.9165,
2215
+ "step": 314
2216
+ },
2217
+ {
2218
+ "epoch": 0.20578147966683,
2219
+ "grad_norm": Infinity,
2220
+ "learning_rate": 0.0001845916552494446,
2221
+ "loss": 2.0489,
2222
+ "step": 315
2223
+ },
2224
+ {
2225
+ "epoch": 0.20643475420545485,
2226
+ "grad_norm": Infinity,
2227
+ "learning_rate": 0.00018447825804249201,
2228
+ "loss": 2.2374,
2229
+ "step": 316
2230
+ },
2231
+ {
2232
+ "epoch": 0.2070880287440797,
2233
+ "grad_norm": Infinity,
2234
+ "learning_rate": 0.00018436448018968731,
2235
+ "loss": 2.232,
2236
+ "step": 317
2237
+ },
2238
+ {
2239
+ "epoch": 0.20774130328270457,
2240
+ "grad_norm": Infinity,
2241
+ "learning_rate": 0.00018425032220369589,
2242
+ "loss": 2.3227,
2243
+ "step": 318
2244
+ },
2245
+ {
2246
+ "epoch": 0.20839457782132942,
2247
+ "grad_norm": Infinity,
2248
+ "learning_rate": 0.0001841357845988957,
2249
+ "loss": 2.6041,
2250
+ "step": 319
2251
+ },
2252
+ {
2253
+ "epoch": 0.20904785235995427,
2254
+ "grad_norm": Infinity,
2255
+ "learning_rate": 0.00018402086789137546,
2256
+ "loss": 2.6858,
2257
+ "step": 320
2258
+ },
2259
+ {
2260
+ "epoch": 0.20970112689857912,
2261
+ "grad_norm": Infinity,
2262
+ "learning_rate": 0.00018390557259893178,
2263
+ "loss": 2.9323,
2264
+ "step": 321
2265
+ },
2266
+ {
2267
+ "epoch": 0.210354401437204,
2268
+ "grad_norm": Infinity,
2269
+ "learning_rate": 0.00018378989924106736,
2270
+ "loss": 2.9611,
2271
+ "step": 322
2272
+ },
2273
+ {
2274
+ "epoch": 0.21100767597582884,
2275
+ "grad_norm": Infinity,
2276
+ "learning_rate": 0.00018367384833898828,
2277
+ "loss": 3.4458,
2278
+ "step": 323
2279
+ },
2280
+ {
2281
+ "epoch": 0.2116609505144537,
2282
+ "grad_norm": Infinity,
2283
+ "learning_rate": 0.0001835574204156018,
2284
+ "loss": 3.5276,
2285
+ "step": 324
2286
+ },
2287
+ {
2288
+ "epoch": 0.21231422505307856,
2289
+ "grad_norm": Infinity,
2290
+ "learning_rate": 0.00018344061599551398,
2291
+ "loss": 4.3704,
2292
+ "step": 325
2293
+ },
2294
+ {
2295
+ "epoch": 0.2129674995917034,
2296
+ "grad_norm": Infinity,
2297
+ "learning_rate": 0.0001833234356050273,
2298
+ "loss": 1.3251,
2299
+ "step": 326
2300
+ },
2301
+ {
2302
+ "epoch": 0.21362077413032826,
2303
+ "grad_norm": Infinity,
2304
+ "learning_rate": 0.0001832058797721383,
2305
+ "loss": 1.3373,
2306
+ "step": 327
2307
+ },
2308
+ {
2309
+ "epoch": 0.21427404866895314,
2310
+ "grad_norm": Infinity,
2311
+ "learning_rate": 0.00018308794902653533,
2312
+ "loss": 1.3725,
2313
+ "step": 328
2314
+ },
2315
+ {
2316
+ "epoch": 0.21492732320757799,
2317
+ "grad_norm": Infinity,
2318
+ "learning_rate": 0.00018296964389959578,
2319
+ "loss": 1.4768,
2320
+ "step": 329
2321
+ },
2322
+ {
2323
+ "epoch": 0.21558059774620283,
2324
+ "grad_norm": Infinity,
2325
+ "learning_rate": 0.00018285096492438424,
2326
+ "loss": 1.4613,
2327
+ "step": 330
2328
+ },
2329
+ {
2330
+ "epoch": 0.2162338722848277,
2331
+ "grad_norm": Infinity,
2332
+ "learning_rate": 0.00018273191263564956,
2333
+ "loss": 1.4252,
2334
+ "step": 331
2335
+ },
2336
+ {
2337
+ "epoch": 0.21688714682345256,
2338
+ "grad_norm": Infinity,
2339
+ "learning_rate": 0.0001826124875698228,
2340
+ "loss": 1.5251,
2341
+ "step": 332
2342
+ },
2343
+ {
2344
+ "epoch": 0.2175404213620774,
2345
+ "grad_norm": Infinity,
2346
+ "learning_rate": 0.00018249269026501472,
2347
+ "loss": 1.6811,
2348
+ "step": 333
2349
+ },
2350
+ {
2351
+ "epoch": 0.21819369590070228,
2352
+ "grad_norm": Infinity,
2353
+ "learning_rate": 0.00018237252126101323,
2354
+ "loss": 1.6452,
2355
+ "step": 334
2356
+ },
2357
+ {
2358
+ "epoch": 0.21884697043932713,
2359
+ "grad_norm": Infinity,
2360
+ "learning_rate": 0.00018225198109928114,
2361
+ "loss": 1.6707,
2362
+ "step": 335
2363
+ },
2364
+ {
2365
+ "epoch": 0.21950024497795198,
2366
+ "grad_norm": Infinity,
2367
+ "learning_rate": 0.00018213107032295363,
2368
+ "loss": 1.6945,
2369
+ "step": 336
2370
+ },
2371
+ {
2372
+ "epoch": 0.22015351951657683,
2373
+ "grad_norm": Infinity,
2374
+ "learning_rate": 0.00018200978947683583,
2375
+ "loss": 1.8109,
2376
+ "step": 337
2377
+ },
2378
+ {
2379
+ "epoch": 0.2208067940552017,
2380
+ "grad_norm": Infinity,
2381
+ "learning_rate": 0.0001818881391074002,
2382
+ "loss": 2.0009,
2383
+ "step": 338
2384
+ },
2385
+ {
2386
+ "epoch": 0.22146006859382655,
2387
+ "grad_norm": Infinity,
2388
+ "learning_rate": 0.00018176611976278441,
2389
+ "loss": 2.0717,
2390
+ "step": 339
2391
+ },
2392
+ {
2393
+ "epoch": 0.2221133431324514,
2394
+ "grad_norm": Infinity,
2395
+ "learning_rate": 0.00018164373199278856,
2396
+ "loss": 2.1003,
2397
+ "step": 340
2398
+ },
2399
+ {
2400
+ "epoch": 0.22276661767107628,
2401
+ "grad_norm": Infinity,
2402
+ "learning_rate": 0.0001815209763488729,
2403
+ "loss": 2.1306,
2404
+ "step": 341
2405
+ },
2406
+ {
2407
+ "epoch": 0.22341989220970113,
2408
+ "grad_norm": Infinity,
2409
+ "learning_rate": 0.00018139785338415517,
2410
+ "loss": 2.2117,
2411
+ "step": 342
2412
+ },
2413
+ {
2414
+ "epoch": 0.22407316674832597,
2415
+ "grad_norm": Infinity,
2416
+ "learning_rate": 0.0001812743636534082,
2417
+ "loss": 2.5837,
2418
+ "step": 343
2419
+ },
2420
+ {
2421
+ "epoch": 0.22472644128695085,
2422
+ "grad_norm": Infinity,
2423
+ "learning_rate": 0.00018115050771305756,
2424
+ "loss": 2.4268,
2425
+ "step": 344
2426
+ },
2427
+ {
2428
+ "epoch": 0.2253797158255757,
2429
+ "grad_norm": Infinity,
2430
+ "learning_rate": 0.00018102628612117865,
2431
+ "loss": 2.4221,
2432
+ "step": 345
2433
+ },
2434
+ {
2435
+ "epoch": 0.22603299036420055,
2436
+ "grad_norm": Infinity,
2437
+ "learning_rate": 0.00018090169943749476,
2438
+ "loss": 2.8648,
2439
+ "step": 346
2440
+ },
2441
+ {
2442
+ "epoch": 0.22668626490282542,
2443
+ "grad_norm": Infinity,
2444
+ "learning_rate": 0.00018077674822337392,
2445
+ "loss": 2.9829,
2446
+ "step": 347
2447
+ },
2448
+ {
2449
+ "epoch": 0.22733953944145027,
2450
+ "grad_norm": Infinity,
2451
+ "learning_rate": 0.00018065143304182683,
2452
+ "loss": 3.1063,
2453
+ "step": 348
2454
+ },
2455
+ {
2456
+ "epoch": 0.22799281398007512,
2457
+ "grad_norm": Infinity,
2458
+ "learning_rate": 0.00018052575445750419,
2459
+ "loss": 3.2922,
2460
+ "step": 349
2461
+ },
2462
+ {
2463
+ "epoch": 0.2286460885187,
2464
+ "grad_norm": Infinity,
2465
+ "learning_rate": 0.00018039971303669407,
2466
+ "loss": 4.3134,
2467
+ "step": 350
2468
+ },
2469
+ {
2470
+ "epoch": 0.22929936305732485,
2471
+ "grad_norm": Infinity,
2472
+ "learning_rate": 0.00018027330934731946,
2473
+ "loss": 1.2538,
2474
+ "step": 351
2475
+ },
2476
+ {
2477
+ "epoch": 0.2299526375959497,
2478
+ "grad_norm": Infinity,
2479
+ "learning_rate": 0.00018014654395893563,
2480
+ "loss": 1.3942,
2481
+ "step": 352
2482
+ },
2483
+ {
2484
+ "epoch": 0.23060591213457454,
2485
+ "grad_norm": Infinity,
2486
+ "learning_rate": 0.00018001941744272767,
2487
+ "loss": 1.3873,
2488
+ "step": 353
2489
+ },
2490
+ {
2491
+ "epoch": 0.23125918667319942,
2492
+ "grad_norm": Infinity,
2493
+ "learning_rate": 0.00017989193037150784,
2494
+ "loss": 1.3868,
2495
+ "step": 354
2496
+ },
2497
+ {
2498
+ "epoch": 0.23191246121182427,
2499
+ "grad_norm": Infinity,
2500
+ "learning_rate": 0.00017976408331971298,
2501
+ "loss": 1.5054,
2502
+ "step": 355
2503
+ },
2504
+ {
2505
+ "epoch": 0.23256573575044912,
2506
+ "grad_norm": Infinity,
2507
+ "learning_rate": 0.00017963587686340197,
2508
+ "loss": 1.4309,
2509
+ "step": 356
2510
+ },
2511
+ {
2512
+ "epoch": 0.233219010289074,
2513
+ "grad_norm": Infinity,
2514
+ "learning_rate": 0.0001795073115802531,
2515
+ "loss": 1.5283,
2516
+ "step": 357
2517
+ },
2518
+ {
2519
+ "epoch": 0.23387228482769884,
2520
+ "grad_norm": Infinity,
2521
+ "learning_rate": 0.0001793783880495615,
2522
+ "loss": 1.6016,
2523
+ "step": 358
2524
+ },
2525
+ {
2526
+ "epoch": 0.2345255593663237,
2527
+ "grad_norm": Infinity,
2528
+ "learning_rate": 0.00017924910685223643,
2529
+ "loss": 1.508,
2530
+ "step": 359
2531
+ },
2532
+ {
2533
+ "epoch": 0.23517883390494856,
2534
+ "grad_norm": Infinity,
2535
+ "learning_rate": 0.00017911946857079888,
2536
+ "loss": 1.735,
2537
+ "step": 360
2538
+ },
2539
+ {
2540
+ "epoch": 0.2358321084435734,
2541
+ "grad_norm": Infinity,
2542
+ "learning_rate": 0.0001789894737893786,
2543
+ "loss": 1.6061,
2544
+ "step": 361
2545
+ },
2546
+ {
2547
+ "epoch": 0.23648538298219826,
2548
+ "grad_norm": Infinity,
2549
+ "learning_rate": 0.00017885912309371192,
2550
+ "loss": 1.6814,
2551
+ "step": 362
2552
+ },
2553
+ {
2554
+ "epoch": 0.23713865752082314,
2555
+ "grad_norm": Infinity,
2556
+ "learning_rate": 0.0001787284170711387,
2557
+ "loss": 1.7403,
2558
+ "step": 363
2559
+ },
2560
+ {
2561
+ "epoch": 0.23779193205944799,
2562
+ "grad_norm": Infinity,
2563
+ "learning_rate": 0.00017859735631059985,
2564
+ "loss": 1.8771,
2565
+ "step": 364
2566
+ },
2567
+ {
2568
+ "epoch": 0.23844520659807283,
2569
+ "grad_norm": Infinity,
2570
+ "learning_rate": 0.00017846594140263474,
2571
+ "loss": 1.954,
2572
+ "step": 365
2573
+ },
2574
+ {
2575
+ "epoch": 0.2390984811366977,
2576
+ "grad_norm": Infinity,
2577
+ "learning_rate": 0.00017833417293937847,
2578
+ "loss": 2.1301,
2579
+ "step": 366
2580
+ },
2581
+ {
2582
+ "epoch": 0.23975175567532256,
2583
+ "grad_norm": Infinity,
2584
+ "learning_rate": 0.00017820205151455914,
2585
+ "loss": 2.0567,
2586
+ "step": 367
2587
+ },
2588
+ {
2589
+ "epoch": 0.2404050302139474,
2590
+ "grad_norm": Infinity,
2591
+ "learning_rate": 0.00017806957772349526,
2592
+ "loss": 2.4691,
2593
+ "step": 368
2594
+ },
2595
+ {
2596
+ "epoch": 0.24105830475257226,
2597
+ "grad_norm": Infinity,
2598
+ "learning_rate": 0.0001779367521630931,
2599
+ "loss": 2.4948,
2600
+ "step": 369
2601
+ },
2602
+ {
2603
+ "epoch": 0.24171157929119713,
2604
+ "grad_norm": Infinity,
2605
+ "learning_rate": 0.00017780357543184397,
2606
+ "loss": 2.7374,
2607
+ "step": 370
2608
+ },
2609
+ {
2610
+ "epoch": 0.24236485382982198,
2611
+ "grad_norm": Infinity,
2612
+ "learning_rate": 0.00017767004812982133,
2613
+ "loss": 2.746,
2614
+ "step": 371
2615
+ },
2616
+ {
2617
+ "epoch": 0.24301812836844683,
2618
+ "grad_norm": Infinity,
2619
+ "learning_rate": 0.00017753617085867847,
2620
+ "loss": 2.6322,
2621
+ "step": 372
2622
+ },
2623
+ {
2624
+ "epoch": 0.2436714029070717,
2625
+ "grad_norm": Infinity,
2626
+ "learning_rate": 0.00017740194422164542,
2627
+ "loss": 2.9857,
2628
+ "step": 373
2629
+ },
2630
+ {
2631
+ "epoch": 0.24432467744569655,
2632
+ "grad_norm": Infinity,
2633
+ "learning_rate": 0.0001772673688235265,
2634
+ "loss": 3.2684,
2635
+ "step": 374
2636
+ },
2637
+ {
2638
+ "epoch": 0.2449779519843214,
2639
+ "grad_norm": Infinity,
2640
+ "learning_rate": 0.0001771324452706975,
2641
+ "loss": 4.7209,
2642
+ "step": 375
2643
+ },
2644
+ {
2645
+ "epoch": 0.24563122652294628,
2646
+ "grad_norm": Infinity,
2647
+ "learning_rate": 0.00017699717417110283,
2648
+ "loss": 1.3461,
2649
+ "step": 376
2650
+ },
2651
+ {
2652
+ "epoch": 0.24628450106157113,
2653
+ "grad_norm": Infinity,
2654
+ "learning_rate": 0.00017686155613425296,
2655
+ "loss": 1.4335,
2656
+ "step": 377
2657
+ },
2658
+ {
2659
+ "epoch": 0.24693777560019597,
2660
+ "grad_norm": Infinity,
2661
+ "learning_rate": 0.00017672559177122165,
2662
+ "loss": 1.4385,
2663
+ "step": 378
2664
+ },
2665
+ {
2666
+ "epoch": 0.24759105013882085,
2667
+ "grad_norm": Infinity,
2668
+ "learning_rate": 0.00017658928169464312,
2669
+ "loss": 1.3503,
2670
+ "step": 379
2671
+ },
2672
+ {
2673
+ "epoch": 0.2482443246774457,
2674
+ "grad_norm": Infinity,
2675
+ "learning_rate": 0.00017645262651870926,
2676
+ "loss": 1.4273,
2677
+ "step": 380
2678
+ },
2679
+ {
2680
+ "epoch": 0.24889759921607055,
2681
+ "grad_norm": Infinity,
2682
+ "learning_rate": 0.00017631562685916703,
2683
+ "loss": 1.3989,
2684
+ "step": 381
2685
+ },
2686
+ {
2687
+ "epoch": 0.24955087375469542,
2688
+ "grad_norm": Infinity,
2689
+ "learning_rate": 0.00017617828333331545,
2690
+ "loss": 1.5455,
2691
+ "step": 382
2692
+ },
2693
+ {
2694
+ "epoch": 0.25020414829332027,
2695
+ "grad_norm": Infinity,
2696
+ "learning_rate": 0.0001760405965600031,
2697
+ "loss": 1.5684,
2698
+ "step": 383
2699
+ },
2700
+ {
2701
+ "epoch": 0.25020414829332027,
2702
+ "eval_loss": 2.097975254058838,
2703
+ "eval_runtime": 160.3657,
2704
+ "eval_samples_per_second": 16.076,
2705
+ "eval_steps_per_second": 4.022,
2706
+ "step": 383
2707
+ }
2708
+ ],
2709
+ "logging_steps": 1,
2710
+ "max_steps": 1530,
2711
+ "num_input_tokens_seen": 0,
2712
+ "num_train_epochs": 1,
2713
+ "save_steps": 383,
2714
+ "stateful_callbacks": {
2715
+ "TrainerControl": {
2716
+ "args": {
2717
+ "should_epoch_stop": false,
2718
+ "should_evaluate": false,
2719
+ "should_log": false,
2720
+ "should_save": true,
2721
+ "should_training_stop": false
2722
+ },
2723
+ "attributes": {}
2724
+ }
2725
+ },
2726
+ "total_flos": 1.576992958756946e+17,
2727
+ "train_batch_size": 2,
2728
+ "trial_name": null,
2729
+ "trial_params": null
2730
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f211badf644cba974b170a13142029d3250be8bb1d6688cb30e08cf7c5447bcb
3
+ size 6776