test-uv-pipeline / ultravox_model.py
farzadab's picture
Upload UltravoxPipeline
745db72 verified
raw
history blame
16.5 kB
import logging
from typing import Any, Dict, Optional, Set, Tuple, Union
import peft
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import transformers.activations
import transformers.modeling_outputs
import transformers.models
# We must use relative import in this directory to allow uploading to HF Hub
from . import ultravox_config
from . import ultravox_processing
from . import whisper_model_modified
class UltravoxModel(
transformers.LlamaPreTrainedModel,
transformers.GenerationMixin,
):
"""
The Ultravox model which consists of an audio encoder and a language model.
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
Parameters:
config: Model configuration class with all the parameters of the model.
"""
config_class = ultravox_config.UltravoxConfig
config: ultravox_config.UltravoxConfig # for type hinting
_no_split_modules = ["Wav2Vec2Model", "WhisperEncoder", "LlamaDecoderLayer"]
def __init__(self, config: ultravox_config.UltravoxConfig):
super().__init__(config)
self.keep_params: Set[str] = set()
self.vocab_size = config.vocab_size
self.audio_tower = self._create_audio_tower(config)
self.multi_modal_projector = UltravoxProjector(config)
self.language_model = self._create_language_model(config)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def _setup_cache(
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
):
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
def _reorder_cache(self, past_key_values, beam_idx):
return self.language_model._reorder_cache(past_key_values, beam_idx)
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(
new_num_tokens, pad_to_multiple_of
)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def forward(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple] = None,
**kwargs,
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
"""
Forward pass for the Ultravox model.
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
of the audio embeddings in the merged embeddings.
Args:
input_ids: The tokenized text input.
audio_values: The processed audio values.
inputs_embeds: The embeddings for the input tokens.
labels: The tokenized text labels.
attention_mask: The attention mask for the input.
position_ids: The position ids for the input.
past_key_values: The past key value cache for the language model attention layers.
**kwargs: Additional keyword arguments. Passed directly to the language model.
"""
if inputs_embeds is None:
# B x T -> B x T x D
inputs_embeds = self.get_input_embeddings().forward(input_ids)
if audio_values is not None:
assert (
audio_token_start_idx is not None and audio_token_len is not None
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
assert (
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
# B x A/3200 x D
audio_tower_output = self.audio_tower.forward(
audio_values
).last_hidden_state
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
# combine audio and text embeddings
for i, (audio, start, length) in enumerate(
zip(audio_embeds, audio_token_start_idx, audio_token_len)
):
length = min(length, audio.shape[0])
inputs_embeds[i, start : start + length] = audio[:length]
lm_output = self.language_model.forward(
inputs_embeds=inputs_embeds,
labels=labels,
attention_mask=attention_mask,
past_key_values=past_key_values,
**kwargs,
)
return lm_output
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.FloatTensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Dict[str, Any]:
model_input = self.language_model.prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs,
)
if past_key_values is None and audio_values is not None:
# We only want to use audio features in the 1st generation step
model_input["audio_values"] = audio_values
model_input["audio_token_start_idx"] = audio_token_start_idx
model_input["audio_token_len"] = audio_token_len
return model_input
@classmethod
def _create_audio_tower(cls, config: ultravox_config.UltravoxConfig) -> Union[
transformers.Wav2Vec2Model,
transformers.models.whisper.modeling_whisper.WhisperEncoder,
]:
if config.audio_model_id is not None:
if "whisper" in config.audio_model_id is not None:
audio_tower = whisper_model_modified.WhisperEncoder.from_pretrained(
config.audio_model_id
)
else:
audio_tower = transformers.AutoModel.from_pretrained(
config.audio_model_id
)
else:
if "whisper" in config.audio_config._name_or_path:
audio_tower = whisper_model_modified.WhisperEncoder(config.audio_config)
else:
audio_tower = transformers.AutoModel.from_config(config.audio_config)
if isinstance(
audio_tower,
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
):
# For these models we only need the encoder part
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
# WhisperModel -> WhisperEncoder
audio_tower = audio_tower.encoder
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
return audio_tower
@classmethod
def _create_language_model(
cls, config: ultravox_config.UltravoxConfig
) -> transformers.LlamaForCausalLM:
if config.text_model_id is not None:
language_model = transformers.AutoModelForCausalLM.from_pretrained(
config.text_model_id, attn_implementation=config._attn_implementation
)
else:
language_model = transformers.AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
language_model = apply_lora(language_model, config.text_model_lora_config)
return language_model
def merge_and_unload(self):
if isinstance(self.language_model, peft.PeftModel):
self.language_model = self.language_model.merge_and_unload()
# no need to download base language model weights anymore, so we can remove the id
self.config.text_model_id = None
self.keep_params.update(
set(
[
f"language_model.{name}"
for name, _ in self.language_model.named_parameters()
]
)
)
if isinstance(self.audio_tower, peft.PeftModel):
self.audio_tower = self.audio_tower.merge_and_unload()
# no need to download base audio model weights anymore, so we can remove the id
self.config.audio_model_id = None
self.keep_params.update(
set(
[
f"audio_tower.{name}"
for name, _ in self.audio_tower.named_parameters()
]
)
)
for param in ["text_model_lora_config", "audio_model_lora_config"]:
if hasattr(self.config, param):
delattr(self.config, param)
def push_to_hub(self, *args, **kwargs):
self.merge_and_unload()
self.to(self.language_model.dtype)
return super().push_to_hub(*args, **kwargs)
def state_dict(self, *args, **kwargs):
named_params = dict(self.named_parameters())
state_dict = super().state_dict(*args, **kwargs)
state_dict = {
k: v
for k, v in state_dict.items()
if k in self.keep_params
or (k in named_params and named_params[k].requires_grad)
}
return state_dict
def load_state_dict(
self,
state_dict: Dict[str, Any],
*args,
**kwargs,
):
self.keep_params.update(set(state_dict.keys()))
return super().load_state_dict(state_dict, *args, **kwargs)
def print_trainable_parameters(self):
"""
Prints the number of trainable parameters in the model (reuses Peft model's method)
"""
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
trainable_params, all_param = count_params(self)
logging.info(
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
)
lm_trainable_params, lm_all_params = count_params(self.language_model)
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
projector_trainable_params = (
trainable_params - lm_trainable_params - audio_trainable_params
)
projector_all_params = all_param - lm_all_params - audio_all_params
logging.info(
f"Trainable%: "
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
)
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
"""
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
"""
lora_config = peft.LoraConfig(**lora_config or {})
if lora_config.r == 0:
# freeze the model entirely
for param in model.parameters():
param.requires_grad = False
else:
model = peft.get_peft_model(model, lora_config)
return model
class StackAudioFrames(nn.Module):
"""
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
In most cases this extra padding will get removed in the model's forward function so it has no effect.
"""
def __init__(self, stack_factor: int = 8):
super().__init__()
self.stack_factor = stack_factor
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
B, T, C = audio_embeds.shape
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
B, T, C = audio_embeds.shape
audio_embeds = audio_embeds.view(
B, T // self.stack_factor, C * self.stack_factor
)
return audio_embeds
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
super().__init__(hidden_size=hidden_size, eps=eps)
self.weight.data.fill_(init)
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
class UltravoxProjector(nn.Sequential):
def __init__(self, config: ultravox_config.UltravoxConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim, init=config.norm_init)
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
dim = self.hidden_dim
self.act = transformers.activations.get_activation(config.projector_act)
dim = dim // 2 if config.projector_act == "swiglu" else dim
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
audio_features = self.ln_pre(audio_features)
hidden_states = self.linear_1(audio_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_post(hidden_states)
return hidden_states
transformers.AutoConfig.register("ultravox", ultravox_config.UltravoxConfig)
transformers.AutoModel.register(ultravox_config.UltravoxConfig, UltravoxModel)
# transformers.AutoModelForCausalLM.register(
# ultravox_config.UltravoxConfig, UltravoxModel
# )
UltravoxModel.register_for_auto_class()
transformers.AutoProcessor.register(
ultravox_config.UltravoxConfig, ultravox_processing.UltravoxProcessor
)
# UltravoxModel.register_for_auto_class("AutoModelForCausalLM")
transformers.activations.ACT2FN["swiglu"] = SwiGLU