Upload UltravoxPipeline
Browse files- config.json +4 -0
- ultravox_model.py +5 -142
- ultravox_pipeline.py +2 -2
config.json
CHANGED
@@ -40,6 +40,10 @@
|
|
40 |
}
|
41 |
},
|
42 |
"impl": "ultravox_pipeline.UltravoxPipeline",
|
|
|
|
|
|
|
|
|
43 |
"type": "multimodal"
|
44 |
}
|
45 |
},
|
|
|
40 |
}
|
41 |
},
|
42 |
"impl": "ultravox_pipeline.UltravoxPipeline",
|
43 |
+
"pt": [
|
44 |
+
"UltravoxModel"
|
45 |
+
],
|
46 |
+
"tf": [],
|
47 |
"type": "multimodal"
|
48 |
}
|
49 |
},
|
ultravox_model.py
CHANGED
@@ -12,148 +12,8 @@ import transformers.models
|
|
12 |
|
13 |
# We must use relative import in this directory to allow uploading to HF Hub
|
14 |
from . import ultravox_config
|
15 |
-
|
16 |
-
|
17 |
-
# see this issue for the commentary: https://github.com/huggingface/transformers/issues/25744
|
18 |
-
#
|
19 |
-
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
|
20 |
-
#
|
21 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
22 |
-
# you may not use this file except in compliance with the License.
|
23 |
-
# You may obtain a copy of the License at
|
24 |
-
#
|
25 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
26 |
-
#
|
27 |
-
# Unless required by applicable law or agreed to in writing, software
|
28 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
29 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
30 |
-
# See the License for the specific language governing permissions and
|
31 |
-
# limitations under the License.
|
32 |
-
import torch
|
33 |
-
import torch.nn as nn
|
34 |
-
import transformers
|
35 |
-
import transformers.modeling_outputs
|
36 |
-
from transformers.models.whisper import modeling_whisper as whisper
|
37 |
-
|
38 |
-
|
39 |
-
class WhisperEncoder(whisper.WhisperEncoder):
|
40 |
-
"""
|
41 |
-
Encoder portion of OpenAI's Whisper model.
|
42 |
-
|
43 |
-
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
44 |
-
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
45 |
-
2. allow less than 30 second of audio padding to be passed in:
|
46 |
-
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
47 |
-
- embed_pos is now sliced to match the length of `inputs_embeds`
|
48 |
-
|
49 |
-
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
50 |
-
"""
|
51 |
-
|
52 |
-
base_model_prefix = "model.encoder"
|
53 |
-
|
54 |
-
def forward(
|
55 |
-
self,
|
56 |
-
input_features,
|
57 |
-
attention_mask=None,
|
58 |
-
head_mask=None,
|
59 |
-
output_attentions=None,
|
60 |
-
output_hidden_states=None,
|
61 |
-
return_dict=None,
|
62 |
-
):
|
63 |
-
expected_seq_length = (
|
64 |
-
self.config.max_source_positions
|
65 |
-
* self.conv1.stride[0]
|
66 |
-
* self.conv2.stride[0]
|
67 |
-
)
|
68 |
-
if input_features.shape[-1] > expected_seq_length:
|
69 |
-
raise ValueError(
|
70 |
-
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
71 |
-
)
|
72 |
-
|
73 |
-
output_attentions = (
|
74 |
-
output_attentions
|
75 |
-
if output_attentions is not None
|
76 |
-
else self.config.output_attentions
|
77 |
-
)
|
78 |
-
output_hidden_states = (
|
79 |
-
output_hidden_states
|
80 |
-
if output_hidden_states is not None
|
81 |
-
else self.config.output_hidden_states
|
82 |
-
)
|
83 |
-
return_dict = (
|
84 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
85 |
-
)
|
86 |
-
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
87 |
-
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
88 |
-
|
89 |
-
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
90 |
-
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
91 |
-
|
92 |
-
hidden_states = inputs_embeds + embed_pos
|
93 |
-
hidden_states = nn.functional.dropout(
|
94 |
-
hidden_states, p=self.dropout, training=self.training
|
95 |
-
)
|
96 |
-
|
97 |
-
encoder_states = () if output_hidden_states else None
|
98 |
-
all_attentions = () if output_attentions else None
|
99 |
-
|
100 |
-
# check if head_mask has a correct number of layers specified if desired
|
101 |
-
if head_mask is not None:
|
102 |
-
assert head_mask.size()[0] == (
|
103 |
-
len(self.layers)
|
104 |
-
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
105 |
-
|
106 |
-
for idx, encoder_layer in enumerate(self.layers):
|
107 |
-
if output_hidden_states:
|
108 |
-
encoder_states = encoder_states + (hidden_states,)
|
109 |
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
110 |
-
to_drop = False
|
111 |
-
if self.training:
|
112 |
-
dropout_probability = torch.rand([])
|
113 |
-
if dropout_probability < self.layerdrop: # skip the layer
|
114 |
-
to_drop = True
|
115 |
-
|
116 |
-
if to_drop:
|
117 |
-
layer_outputs = (None, None)
|
118 |
-
else:
|
119 |
-
if self.gradient_checkpointing and self.training:
|
120 |
-
layer_outputs = self._gradient_checkpointing_func(
|
121 |
-
encoder_layer.__call__,
|
122 |
-
hidden_states,
|
123 |
-
None,
|
124 |
-
(head_mask[idx] if head_mask is not None else None),
|
125 |
-
output_attentions,
|
126 |
-
)
|
127 |
-
else:
|
128 |
-
layer_outputs = encoder_layer(
|
129 |
-
hidden_states,
|
130 |
-
None,
|
131 |
-
layer_head_mask=(
|
132 |
-
head_mask[idx] if head_mask is not None else None
|
133 |
-
),
|
134 |
-
output_attentions=output_attentions,
|
135 |
-
)
|
136 |
-
|
137 |
-
hidden_states = layer_outputs[0]
|
138 |
-
|
139 |
-
if output_attentions:
|
140 |
-
all_attentions = all_attentions + (layer_outputs[1],)
|
141 |
-
|
142 |
-
hidden_states = self.layer_norm(hidden_states)
|
143 |
-
if output_hidden_states:
|
144 |
-
encoder_states = encoder_states + (hidden_states,)
|
145 |
-
|
146 |
-
if not return_dict:
|
147 |
-
return tuple(
|
148 |
-
v
|
149 |
-
for v in [hidden_states, encoder_states, all_attentions]
|
150 |
-
if v is not None
|
151 |
-
)
|
152 |
-
return transformers.modeling_outputs.BaseModelOutput(
|
153 |
-
last_hidden_state=hidden_states,
|
154 |
-
hidden_states=encoder_states,
|
155 |
-
attentions=all_attentions,
|
156 |
-
)
|
157 |
|
158 |
|
159 |
class UltravoxModel(
|
@@ -544,6 +404,9 @@ transformers.AutoModel.register(ultravox_config.UltravoxConfig, UltravoxModel)
|
|
544 |
# ultravox_config.UltravoxConfig, UltravoxModel
|
545 |
# )
|
546 |
UltravoxModel.register_for_auto_class()
|
|
|
|
|
|
|
547 |
# UltravoxModel.register_for_auto_class("AutoModelForCausalLM")
|
548 |
|
549 |
|
|
|
12 |
|
13 |
# We must use relative import in this directory to allow uploading to HF Hub
|
14 |
from . import ultravox_config
|
15 |
+
from . import ultravox_processing
|
16 |
+
from . import whisper_model_modified
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
class UltravoxModel(
|
|
|
404 |
# ultravox_config.UltravoxConfig, UltravoxModel
|
405 |
# )
|
406 |
UltravoxModel.register_for_auto_class()
|
407 |
+
transformers.AutoProcessor.register(
|
408 |
+
ultravox_config.UltravoxConfig, ultravox_processing.UltravoxProcessor
|
409 |
+
)
|
410 |
# UltravoxModel.register_for_auto_class("AutoModelForCausalLM")
|
411 |
|
412 |
|
ultravox_pipeline.py
CHANGED
@@ -4,8 +4,8 @@ from typing import Any, Dict, List, Optional
|
|
4 |
import transformers
|
5 |
|
6 |
# We must use relative import in this directory to allow uploading to HF Hub
|
7 |
-
import
|
8 |
-
import
|
9 |
|
10 |
|
11 |
class UltravoxPipeline(transformers.Pipeline):
|
|
|
4 |
import transformers
|
5 |
|
6 |
# We must use relative import in this directory to allow uploading to HF Hub
|
7 |
+
from . import ultravox_model
|
8 |
+
from . import ultravox_processing
|
9 |
|
10 |
|
11 |
class UltravoxPipeline(transformers.Pipeline):
|