metadata
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
- automatic-speech-recognition
- greek
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: whisper-md-el-intlv-xs
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: el
split: test
metrics:
- name: Wer
type: wer
value: 11.367
whisper-md-el-intlv-xs
This model is a fine-tuned version of openai/whisper-medium on interleaved mozilla-foundation/common_voice_11_0 (el) and the google/fleurs (el_gr) datasets. It achieves the following results on the mozilla-foundation/common_voice_11_0 test evaluation set:
- Loss: 0.4168
- Wer: 11.3670
Model description
This model is trained over the two interleaved datasets in the Greek language. Testing used only the common_voice_11_0 (el) test split.
Intended uses & limitations
The model was trained for transcription in Greek
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0251 | 2.49 | 1000 | 0.2216 | 12.5836 |
0.0051 | 4.98 | 2000 | 0.2874 | 12.2957 |
0.0015 | 7.46 | 3000 | 0.3281 | 11.9056 |
0.0017 | 9.95 | 4000 | 0.3178 | 12.5929 |
0.0008 | 12.44 | 5000 | 0.3449 | 11.9799 |
0.0001 | 14.93 | 6000 | 0.3638 | 11.7106 |
0.0001 | 17.41 | 7000 | 0.3910 | 11.4970 |
0.0 | 19.9 | 8000 | 0.4042 | 11.3949 |
0.0 | 22.39 | 9000 | 0.4129 | 11.4134 |
0.0 | 24.88 | 10000 | 0.4168 | 11.3670 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2