metadata
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- whisper-large
- mozilla-foundation/common_voice_11_0
- greek
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: whisper-lg-el-intlv-xs-2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 el
type: mozilla-foundation/common_voice_11_0
config: el
split: test
metrics:
- name: Wer
type: wer
value: 9.50037147102526
whisper-lg-el-intlv-xs-2
This model is a fine-tuned version of farsipal/whisper-lg-el-intlv-xs on the mozilla-foundation/common_voice_11_0,google/fleurs el,el_gr dataset. It achieves the following results on the evaluation set:
- Loss: 0.2872
- Wer: 9.5004
Model description
The model was trained on two interleaved datasets for transcription in the Greek language.
Intended uses & limitations
Transcription in the Greek language
Training and evaluation data
Training was performed on two interleaved datasets. Testing was performed on common voice 11.0 (el) test only.
Training procedure
--model_name_or_path 'farsipal/whisper-lg-el-intlv-xs' \
--model_revision main \
--do_train True \
--do_eval True \
--use_auth_token False \
--freeze_feature_encoder False \
--freeze_encoder False \
--model_index_name 'whisper-lg-el-intlv-xs-2' \
--dataset_name 'mozilla-foundation/common_voice_11_0,google/fleurs' \
--dataset_config_name 'el,el_gr' \
--train_split_name 'train+validation,train+validation' \
--eval_split_name 'test,-' \
--text_column_name 'sentence,transcription' \
--audio_column_name 'audio,audio' \
--streaming False \
--max_duration_in_seconds 30 \
--do_lower_case False \
--do_remove_punctuation False \
--do_normalize_eval True \
--language greek \
--task transcribe \
--shuffle_buffer_size 500 \
--output_dir './data/finetuningRuns/whisper-lg-el-intlv-xs-2' \
--overwrite_output_dir True \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 4 \
--learning_rate 3.5e-6 \
--dropout 0.15 \
--attention_dropout 0.05 \
--warmup_steps 500 \
--max_steps 5000 \
--eval_steps 1000 \
--gradient_checkpointing True \
--cache_dir '~/.cache' \
--fp16 True \
--evaluation_strategy steps \
--per_device_eval_batch_size 8 \
--predict_with_generate True \
--generation_max_length 225 \
--save_steps 1000 \
--logging_steps 25 \
--report_to tensorboard \
--load_best_model_at_end True \
--metric_for_best_model wer \
--greater_is_better False \
--push_to_hub False \
--dataloader_num_workers 6
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0813 | 2.49 | 1000 | 0.2147 | 10.8284 |
0.0379 | 4.98 | 2000 | 0.2439 | 10.0111 |
0.0195 | 7.46 | 3000 | 0.2767 | 9.8811 |
0.0126 | 9.95 | 4000 | 0.2872 | 9.5004 |
0.0103 | 12.44 | 5000 | 0.3021 | 9.6954 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2