XYZ-embedding-zh-v2 / README.md
fangxq's picture
Upload README.md
7784df4 verified
metadata
model-index:
  - name: XYZ-embedding-zh-v2
    results:
      - dataset:
          config: default
          name: MTEB AFQMC
          revision: None
          split: validation
          type: C-MTEB/AFQMC
        metrics:
          - type: cos_sim_pearson
            value: 55.51799059309076
          - type: cos_sim_spearman
            value: 58.407433584137806
          - type: manhattan_pearson
            value: 57.17473672145622
          - type: manhattan_spearman
            value: 58.389018054159955
          - type: euclidean_pearson
            value: 57.19483956761451
          - type: euclidean_spearman
            value: 58.407433584137806
          - type: main_score
            value: 58.407433584137806
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB ATEC
          revision: None
          split: test
          type: C-MTEB/ATEC
        metrics:
          - type: cos_sim_pearson
            value: 57.31078155367183
          - type: cos_sim_spearman
            value: 57.59782762324478
          - type: manhattan_pearson
            value: 62.525487007985035
          - type: manhattan_spearman
            value: 57.591139966303615
          - type: euclidean_pearson
            value: 62.53702437760052
          - type: euclidean_spearman
            value: 57.597828749091384
          - type: main_score
            value: 57.59782762324478
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 49.374
          - type: accuracy_stderr
            value: 1.436636349254743
          - type: f1
            value: 47.115240601017774
          - type: f1_stderr
            value: 1.5642799356594534
          - type: main_score
            value: 49.374
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BQ
          revision: None
          split: test
          type: C-MTEB/BQ
        metrics:
          - type: cos_sim_pearson
            value: 71.49514309404829
          - type: cos_sim_spearman
            value: 72.66161713021279
          - type: manhattan_pearson
            value: 71.03443640254005
          - type: manhattan_spearman
            value: 72.63439621980275
          - type: euclidean_pearson
            value: 71.06830370642658
          - type: euclidean_spearman
            value: 72.66161713043078
          - type: main_score
            value: 72.66161713021279
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB CLSClusteringP2P
          revision: None
          split: test
          type: C-MTEB/CLSClusteringP2P
        metrics:
          - type: v_measure
            value: 57.237692641281
          - type: v_measure_std
            value: 1.2777768354339174
          - type: main_score
            value: 57.237692641281
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CLSClusteringS2S
          revision: None
          split: test
          type: C-MTEB/CLSClusteringS2S
        metrics:
          - type: v_measure
            value: 48.41686666939331
          - type: v_measure_std
            value: 1.7663118461900793
          - type: main_score
            value: 48.41686666939331
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CMedQAv1
          revision: None
          split: test
          type: C-MTEB/CMedQAv1-reranking
        metrics:
          - type: map
            value: 89.9766367822762
          - type: mrr
            value: 91.88896825396824
          - type: main_score
            value: 89.9766367822762
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CMedQAv2
          revision: None
          split: test
          type: C-MTEB/CMedQAv2-reranking
        metrics:
          - type: map
            value: 89.04628340075982
          - type: mrr
            value: 91.21702380952381
          - type: main_score
            value: 89.04628340075982
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CmedqaRetrieval
          revision: None
          split: dev
          type: C-MTEB/CmedqaRetrieval
        metrics:
          - type: map_at_1
            value: 27.796
          - type: map_at_10
            value: 41.498000000000005
          - type: map_at_100
            value: 43.332
          - type: map_at_1000
            value: 43.429
          - type: map_at_3
            value: 37.172
          - type: map_at_5
            value: 39.617000000000004
          - type: mrr_at_1
            value: 42.111
          - type: mrr_at_10
            value: 50.726000000000006
          - type: mrr_at_100
            value: 51.632
          - type: mrr_at_1000
            value: 51.67
          - type: mrr_at_3
            value: 48.429
          - type: mrr_at_5
            value: 49.662
          - type: ndcg_at_1
            value: 42.111
          - type: ndcg_at_10
            value: 48.294
          - type: ndcg_at_100
            value: 55.135999999999996
          - type: ndcg_at_1000
            value: 56.818000000000005
          - type: ndcg_at_3
            value: 43.185
          - type: ndcg_at_5
            value: 45.266
          - type: precision_at_1
            value: 42.111
          - type: precision_at_10
            value: 10.635
          - type: precision_at_100
            value: 1.619
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 24.539
          - type: precision_at_5
            value: 17.644000000000002
          - type: recall_at_1
            value: 27.796
          - type: recall_at_10
            value: 59.034
          - type: recall_at_100
            value: 86.991
          - type: recall_at_1000
            value: 98.304
          - type: recall_at_3
            value: 43.356
          - type: recall_at_5
            value: 49.998
          - type: main_score
            value: 48.294
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Cmnli
          revision: None
          split: validation
          type: C-MTEB/CMNLI
        metrics:
          - type: cos_sim_accuracy
            value: 82.8983764281419
          - type: cos_sim_accuracy_threshold
            value: 56.05731010437012
          - type: cos_sim_ap
            value: 90.23156362696572
          - type: cos_sim_f1
            value: 83.83207278307574
          - type: cos_sim_f1_threshold
            value: 52.05453634262085
          - type: cos_sim_precision
            value: 78.91044160132068
          - type: cos_sim_recall
            value: 89.40846387654898
          - type: dot_accuracy
            value: 82.8983764281419
          - type: dot_accuracy_threshold
            value: 56.05730414390564
          - type: dot_ap
            value: 90.20952356258861
          - type: dot_f1
            value: 83.83207278307574
          - type: dot_f1_threshold
            value: 52.054524421691895
          - type: dot_precision
            value: 78.91044160132068
          - type: dot_recall
            value: 89.40846387654898
          - type: euclidean_accuracy
            value: 82.8983764281419
          - type: euclidean_accuracy_threshold
            value: 93.74719858169556
          - type: euclidean_ap
            value: 90.23156283510565
          - type: euclidean_f1
            value: 83.83207278307574
          - type: euclidean_f1_threshold
            value: 97.92392253875732
          - type: euclidean_precision
            value: 78.91044160132068
          - type: euclidean_recall
            value: 89.40846387654898
          - type: manhattan_accuracy
            value: 82.85027059530968
          - type: manhattan_accuracy_threshold
            value: 3164.584159851074
          - type: manhattan_ap
            value: 90.23178004516869
          - type: manhattan_f1
            value: 83.82157123834887
          - type: manhattan_f1_threshold
            value: 3273.5992431640625
          - type: manhattan_precision
            value: 79.76768743400211
          - type: manhattan_recall
            value: 88.30956277764788
          - type: max_accuracy
            value: 82.8983764281419
          - type: max_ap
            value: 90.23178004516869
          - type: max_f1
            value: 83.83207278307574
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB CovidRetrieval
          revision: None
          split: dev
          type: C-MTEB/CovidRetrieval
        metrics:
          - type: map_at_1
            value: 80.479
          - type: map_at_10
            value: 87.984
          - type: map_at_100
            value: 88.036
          - type: map_at_1000
            value: 88.03699999999999
          - type: map_at_3
            value: 87.083
          - type: map_at_5
            value: 87.694
          - type: mrr_at_1
            value: 80.927
          - type: mrr_at_10
            value: 88.046
          - type: mrr_at_100
            value: 88.099
          - type: mrr_at_1000
            value: 88.1
          - type: mrr_at_3
            value: 87.215
          - type: mrr_at_5
            value: 87.768
          - type: ndcg_at_1
            value: 80.927
          - type: ndcg_at_10
            value: 90.756
          - type: ndcg_at_100
            value: 90.96
          - type: ndcg_at_1000
            value: 90.975
          - type: ndcg_at_3
            value: 89.032
          - type: ndcg_at_5
            value: 90.106
          - type: precision_at_1
            value: 80.927
          - type: precision_at_10
            value: 10.011000000000001
          - type: precision_at_100
            value: 1.009
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 31.752999999999997
          - type: precision_at_5
            value: 19.6
          - type: recall_at_1
            value: 80.479
          - type: recall_at_10
            value: 99.05199999999999
          - type: recall_at_100
            value: 99.895
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 94.494
          - type: recall_at_5
            value: 97.102
          - type: main_score
            value: 90.756
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DuRetrieval
          revision: None
          split: dev
          type: C-MTEB/DuRetrieval
        metrics:
          - type: map_at_1
            value: 27.853
          - type: map_at_10
            value: 85.13199999999999
          - type: map_at_100
            value: 87.688
          - type: map_at_1000
            value: 87.712
          - type: map_at_3
            value: 59.705
          - type: map_at_5
            value: 75.139
          - type: mrr_at_1
            value: 93.65
          - type: mrr_at_10
            value: 95.682
          - type: mrr_at_100
            value: 95.722
          - type: mrr_at_1000
            value: 95.724
          - type: mrr_at_3
            value: 95.467
          - type: mrr_at_5
            value: 95.612
          - type: ndcg_at_1
            value: 93.65
          - type: ndcg_at_10
            value: 91.155
          - type: ndcg_at_100
            value: 93.183
          - type: ndcg_at_1000
            value: 93.38499999999999
          - type: ndcg_at_3
            value: 90.648
          - type: ndcg_at_5
            value: 89.47699999999999
          - type: precision_at_1
            value: 93.65
          - type: precision_at_10
            value: 43.11
          - type: precision_at_100
            value: 4.854
          - type: precision_at_1000
            value: 0.49100000000000005
          - type: precision_at_3
            value: 81.11699999999999
          - type: precision_at_5
            value: 68.28999999999999
          - type: recall_at_1
            value: 27.853
          - type: recall_at_10
            value: 91.678
          - type: recall_at_100
            value: 98.553
          - type: recall_at_1000
            value: 99.553
          - type: recall_at_3
            value: 61.381
          - type: recall_at_5
            value: 78.605
          - type: main_score
            value: 91.155
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EcomRetrieval
          revision: None
          split: dev
          type: C-MTEB/EcomRetrieval
        metrics:
          - type: map_at_1
            value: 54.50000000000001
          - type: map_at_10
            value: 65.167
          - type: map_at_100
            value: 65.664
          - type: map_at_1000
            value: 65.67399999999999
          - type: map_at_3
            value: 62.633
          - type: map_at_5
            value: 64.208
          - type: mrr_at_1
            value: 54.50000000000001
          - type: mrr_at_10
            value: 65.167
          - type: mrr_at_100
            value: 65.664
          - type: mrr_at_1000
            value: 65.67399999999999
          - type: mrr_at_3
            value: 62.633
          - type: mrr_at_5
            value: 64.208
          - type: ndcg_at_1
            value: 54.50000000000001
          - type: ndcg_at_10
            value: 70.294
          - type: ndcg_at_100
            value: 72.564
          - type: ndcg_at_1000
            value: 72.841
          - type: ndcg_at_3
            value: 65.128
          - type: ndcg_at_5
            value: 67.96799999999999
          - type: precision_at_1
            value: 54.50000000000001
          - type: precision_at_10
            value: 8.64
          - type: precision_at_100
            value: 0.967
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 24.099999999999998
          - type: precision_at_5
            value: 15.840000000000002
          - type: recall_at_1
            value: 54.50000000000001
          - type: recall_at_10
            value: 86.4
          - type: recall_at_100
            value: 96.7
          - type: recall_at_1000
            value: 98.9
          - type: recall_at_3
            value: 72.3
          - type: recall_at_5
            value: 79.2
          - type: main_score
            value: 70.294
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB IFlyTek
          revision: None
          split: validation
          type: C-MTEB/IFlyTek-classification
        metrics:
          - type: accuracy
            value: 52.743362831858406
          - type: accuracy_stderr
            value: 0.23768288128480788
          - type: f1
            value: 41.1548855278405
          - type: f1_stderr
            value: 0.4088759842813554
          - type: main_score
            value: 52.743362831858406
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB JDReview
          revision: None
          split: test
          type: C-MTEB/JDReview-classification
        metrics:
          - type: accuracy
            value: 89.08067542213884
          - type: accuracy_stderr
            value: 0.9559278951487445
          - type: ap
            value: 60.875320104586564
          - type: ap_stderr
            value: 2.137806661565934
          - type: f1
            value: 84.39314192399665
          - type: f1_stderr
            value: 1.132407155321657
          - type: main_score
            value: 89.08067542213884
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB LCQMC
          revision: None
          split: test
          type: C-MTEB/LCQMC
        metrics:
          - type: cos_sim_pearson
            value: 73.3633875566899
          - type: cos_sim_spearman
            value: 79.27679599527615
          - type: manhattan_pearson
            value: 79.12061667088273
          - type: manhattan_spearman
            value: 79.26989882781706
          - type: euclidean_pearson
            value: 79.12871362068391
          - type: euclidean_spearman
            value: 79.27679377557219
          - type: main_score
            value: 79.27679599527615
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB MMarcoReranking
          revision: None
          split: dev
          type: C-MTEB/Mmarco-reranking
        metrics:
          - type: map
            value: 37.68251937316638
          - type: mrr
            value: 36.61746031746032
          - type: main_score
            value: 37.68251937316638
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB MMarcoRetrieval
          revision: None
          split: dev
          type: C-MTEB/MMarcoRetrieval
        metrics:
          - type: map_at_1
            value: 69.401
          - type: map_at_10
            value: 78.8
          - type: map_at_100
            value: 79.077
          - type: map_at_1000
            value: 79.081
          - type: map_at_3
            value: 76.97
          - type: map_at_5
            value: 78.185
          - type: mrr_at_1
            value: 71.719
          - type: mrr_at_10
            value: 79.327
          - type: mrr_at_100
            value: 79.56400000000001
          - type: mrr_at_1000
            value: 79.56800000000001
          - type: mrr_at_3
            value: 77.736
          - type: mrr_at_5
            value: 78.782
          - type: ndcg_at_1
            value: 71.719
          - type: ndcg_at_10
            value: 82.505
          - type: ndcg_at_100
            value: 83.673
          - type: ndcg_at_1000
            value: 83.786
          - type: ndcg_at_3
            value: 79.07600000000001
          - type: ndcg_at_5
            value: 81.122
          - type: precision_at_1
            value: 71.719
          - type: precision_at_10
            value: 9.924
          - type: precision_at_100
            value: 1.049
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 29.742
          - type: precision_at_5
            value: 18.937
          - type: recall_at_1
            value: 69.401
          - type: recall_at_10
            value: 93.349
          - type: recall_at_100
            value: 98.492
          - type: recall_at_1000
            value: 99.384
          - type: recall_at_3
            value: 84.385
          - type: recall_at_5
            value: 89.237
          - type: main_score
            value: 82.505
        task:
          type: Retrieval
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 77.9388029589778
          - type: accuracy_stderr
            value: 1.416192788478398
          - type: f1
            value: 74.77765701086211
          - type: f1_stderr
            value: 1.254859698486085
          - type: main_score
            value: 77.9388029589778
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 83.8231338264963
          - type: accuracy_stderr
            value: 0.6973305760755886
          - type: f1
            value: 83.13105322628088
          - type: f1_stderr
            value: 0.600506118139685
          - type: main_score
            value: 83.8231338264963
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedicalRetrieval
          revision: None
          split: dev
          type: C-MTEB/MedicalRetrieval
        metrics:
          - type: map_at_1
            value: 57.8
          - type: map_at_10
            value: 64.696
          - type: map_at_100
            value: 65.294
          - type: map_at_1000
            value: 65.328
          - type: map_at_3
            value: 62.949999999999996
          - type: map_at_5
            value: 64.095
          - type: mrr_at_1
            value: 58.099999999999994
          - type: mrr_at_10
            value: 64.85
          - type: mrr_at_100
            value: 65.448
          - type: mrr_at_1000
            value: 65.482
          - type: mrr_at_3
            value: 63.1
          - type: mrr_at_5
            value: 64.23
          - type: ndcg_at_1
            value: 57.8
          - type: ndcg_at_10
            value: 68.041
          - type: ndcg_at_100
            value: 71.074
          - type: ndcg_at_1000
            value: 71.919
          - type: ndcg_at_3
            value: 64.584
          - type: ndcg_at_5
            value: 66.625
          - type: precision_at_1
            value: 57.8
          - type: precision_at_10
            value: 7.85
          - type: precision_at_100
            value: 0.9289999999999999
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 23.1
          - type: precision_at_5
            value: 14.84
          - type: recall_at_1
            value: 57.8
          - type: recall_at_10
            value: 78.5
          - type: recall_at_100
            value: 92.9
          - type: recall_at_1000
            value: 99.4
          - type: recall_at_3
            value: 69.3
          - type: recall_at_5
            value: 74.2
          - type: main_score
            value: 68.041
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MultilingualSentiment
          revision: None
          split: validation
          type: C-MTEB/MultilingualSentiment-classification
        metrics:
          - type: accuracy
            value: 78.60333333333334
          - type: accuracy_stderr
            value: 0.3331499495555859
          - type: f1
            value: 78.4814340961856
          - type: f1_stderr
            value: 0.45721454672060496
          - type: main_score
            value: 78.60333333333334
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB Ocnli
          revision: None
          split: validation
          type: C-MTEB/OCNLI
        metrics:
          - type: cos_sim_accuracy
            value: 80.5630752571738
          - type: cos_sim_accuracy_threshold
            value: 53.72971296310425
          - type: cos_sim_ap
            value: 85.61885910463258
          - type: cos_sim_f1
            value: 82.40469208211144
          - type: cos_sim_f1_threshold
            value: 50.07883310317993
          - type: cos_sim_precision
            value: 76.70609645131938
          - type: cos_sim_recall
            value: 89.01795142555439
          - type: dot_accuracy
            value: 80.5630752571738
          - type: dot_accuracy_threshold
            value: 53.7297248840332
          - type: dot_ap
            value: 85.61885910463258
          - type: dot_f1
            value: 82.40469208211144
          - type: dot_f1_threshold
            value: 50.07884502410889
          - type: dot_precision
            value: 76.70609645131938
          - type: dot_recall
            value: 89.01795142555439
          - type: euclidean_accuracy
            value: 80.5630752571738
          - type: euclidean_accuracy_threshold
            value: 96.19801044464111
          - type: euclidean_ap
            value: 85.61885910463258
          - type: euclidean_f1
            value: 82.40469208211144
          - type: euclidean_f1_threshold
            value: 99.92111921310425
          - type: euclidean_precision
            value: 76.70609645131938
          - type: euclidean_recall
            value: 89.01795142555439
          - type: manhattan_accuracy
            value: 80.67135896047645
          - type: manhattan_accuracy_threshold
            value: 3323.1739044189453
          - type: manhattan_ap
            value: 85.55348220886658
          - type: manhattan_f1
            value: 82.26744186046511
          - type: manhattan_f1_threshold
            value: 3389.273452758789
          - type: manhattan_precision
            value: 76.00716204118174
          - type: manhattan_recall
            value: 89.65153115100317
          - type: max_accuracy
            value: 80.67135896047645
          - type: max_ap
            value: 85.61885910463258
          - type: max_f1
            value: 82.40469208211144
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB OnlineShopping
          revision: None
          split: test
          type: C-MTEB/OnlineShopping-classification
        metrics:
          - type: accuracy
            value: 94.94
          - type: accuracy_stderr
            value: 0.49030602688525093
          - type: ap
            value: 93.0785841977823
          - type: ap_stderr
            value: 0.5447383082750599
          - type: f1
            value: 94.92765777406245
          - type: f1_stderr
            value: 0.4891510966106189
          - type: main_score
            value: 94.94
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PAWSX
          revision: None
          split: test
          type: C-MTEB/PAWSX
        metrics:
          - type: cos_sim_pearson
            value: 36.564307811370654
          - type: cos_sim_spearman
            value: 42.44208208349051
          - type: manhattan_pearson
            value: 42.099358471578306
          - type: manhattan_spearman
            value: 42.50283181486304
          - type: euclidean_pearson
            value: 42.07954956675317
          - type: euclidean_spearman
            value: 42.453014115018554
          - type: main_score
            value: 42.44208208349051
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB QBQTC
          revision: None
          split: test
          type: C-MTEB/QBQTC
        metrics:
          - type: cos_sim_pearson
            value: 39.19092968089104
          - type: cos_sim_spearman
            value: 41.5174661348832
          - type: manhattan_pearson
            value: 37.91587646684523
          - type: manhattan_spearman
            value: 41.536668677987194
          - type: euclidean_pearson
            value: 37.91079973901135
          - type: euclidean_spearman
            value: 41.51833855501128
          - type: main_score
            value: 41.5174661348832
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22 (zh)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 62.029449510721605
          - type: cos_sim_spearman
            value: 66.31935471251364
          - type: manhattan_pearson
            value: 63.63179975157496
          - type: manhattan_spearman
            value: 66.3007950466125
          - type: euclidean_pearson
            value: 63.59752734041086
          - type: euclidean_spearman
            value: 66.31935471251364
          - type: main_score
            value: 66.31935471251364
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSB
          revision: None
          split: test
          type: C-MTEB/STSB
        metrics:
          - type: cos_sim_pearson
            value: 81.81459862563769
          - type: cos_sim_spearman
            value: 82.15323953301453
          - type: manhattan_pearson
            value: 81.61904305126016
          - type: manhattan_spearman
            value: 82.1361073852468
          - type: euclidean_pearson
            value: 81.60799063723992
          - type: euclidean_spearman
            value: 82.15405405083231
          - type: main_score
            value: 82.15323953301453
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB T2Reranking
          revision: None
          split: dev
          type: C-MTEB/T2Reranking
        metrics:
          - type: map
            value: 69.13560834260383
          - type: mrr
            value: 79.95749642669074
          - type: main_score
            value: 69.13560834260383
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB T2Retrieval
          revision: None
          split: dev
          type: C-MTEB/T2Retrieval
        metrics:
          - type: map_at_1
            value: 28.041
          - type: map_at_10
            value: 78.509
          - type: map_at_100
            value: 82.083
          - type: map_at_1000
            value: 82.143
          - type: map_at_3
            value: 55.345
          - type: map_at_5
            value: 67.899
          - type: mrr_at_1
            value: 90.86
          - type: mrr_at_10
            value: 93.31
          - type: mrr_at_100
            value: 93.388
          - type: mrr_at_1000
            value: 93.391
          - type: mrr_at_3
            value: 92.92200000000001
          - type: mrr_at_5
            value: 93.167
          - type: ndcg_at_1
            value: 90.86
          - type: ndcg_at_10
            value: 85.875
          - type: ndcg_at_100
            value: 89.269
          - type: ndcg_at_1000
            value: 89.827
          - type: ndcg_at_3
            value: 87.254
          - type: ndcg_at_5
            value: 85.855
          - type: precision_at_1
            value: 90.86
          - type: precision_at_10
            value: 42.488
          - type: precision_at_100
            value: 5.029
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 76.172
          - type: precision_at_5
            value: 63.759
          - type: recall_at_1
            value: 28.041
          - type: recall_at_10
            value: 84.829
          - type: recall_at_100
            value: 95.89999999999999
          - type: recall_at_1000
            value: 98.665
          - type: recall_at_3
            value: 57.009
          - type: recall_at_5
            value: 71.188
          - type: main_score
            value: 85.875
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TNews
          revision: None
          split: validation
          type: C-MTEB/TNews-classification
        metrics:
          - type: accuracy
            value: 54.309000000000005
          - type: accuracy_stderr
            value: 0.4694347665011627
          - type: f1
            value: 52.598803987889255
          - type: f1_stderr
            value: 0.5191189533227434
          - type: main_score
            value: 54.309000000000005
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringP2P
          revision: None
          split: test
          type: C-MTEB/ThuNewsClusteringP2P
        metrics:
          - type: v_measure
            value: 76.64191229011249
          - type: v_measure_std
            value: 2.807206940615986
          - type: main_score
            value: 76.64191229011249
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringS2S
          revision: None
          split: test
          type: C-MTEB/ThuNewsClusteringS2S
        metrics:
          - type: v_measure
            value: 71.02529199411326
          - type: v_measure_std
            value: 2.0547855888165945
          - type: main_score
            value: 71.02529199411326
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB VideoRetrieval
          revision: None
          split: dev
          type: C-MTEB/VideoRetrieval
        metrics:
          - type: map_at_1
            value: 67.30000000000001
          - type: map_at_10
            value: 76.819
          - type: map_at_100
            value: 77.141
          - type: map_at_1000
            value: 77.142
          - type: map_at_3
            value: 75.233
          - type: map_at_5
            value: 76.163
          - type: mrr_at_1
            value: 67.30000000000001
          - type: mrr_at_10
            value: 76.819
          - type: mrr_at_100
            value: 77.141
          - type: mrr_at_1000
            value: 77.142
          - type: mrr_at_3
            value: 75.233
          - type: mrr_at_5
            value: 76.163
          - type: ndcg_at_1
            value: 67.30000000000001
          - type: ndcg_at_10
            value: 80.93599999999999
          - type: ndcg_at_100
            value: 82.311
          - type: ndcg_at_1000
            value: 82.349
          - type: ndcg_at_3
            value: 77.724
          - type: ndcg_at_5
            value: 79.406
          - type: precision_at_1
            value: 67.30000000000001
          - type: precision_at_10
            value: 9.36
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 28.299999999999997
          - type: precision_at_5
            value: 17.8
          - type: recall_at_1
            value: 67.30000000000001
          - type: recall_at_10
            value: 93.60000000000001
          - type: recall_at_100
            value: 99.6
          - type: recall_at_1000
            value: 99.9
          - type: recall_at_3
            value: 84.89999999999999
          - type: recall_at_5
            value: 89
          - type: main_score
            value: 80.93599999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Waimai
          revision: None
          split: test
          type: C-MTEB/waimai-classification
        metrics:
          - type: accuracy
            value: 89.47
          - type: accuracy_stderr
            value: 0.26476404589747476
          - type: ap
            value: 75.49555223825388
          - type: ap_stderr
            value: 0.596040511982105
          - type: f1
            value: 88.01797939221065
          - type: f1_stderr
            value: 0.27168216797281214
          - type: main_score
            value: 89.47
        task:
          type: Classification
tags:
  - mteb

XYZ-embedding-zh-v2

Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("fangxq/XYZ-embedding-zh-v2")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1792]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]