fakezeta commited on
Commit
e5b7e19
·
verified ·
1 Parent(s): ac6eef5

Upload 14 files

Browse files
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # OpenVINO IR model with int8 quantization
6
+
7
+ Model definition for LocalAI:
8
+ ```
9
+ name: Yi-9B
10
+ backend: transformers
11
+ parameters:
12
+ model: fakezeta/Yi-1.5-9B-Chat-ov-int8
13
+ context_size: 8192
14
+ type: OVModelForCausalLM
15
+ template:
16
+ use_tokenizer_template: true
17
+ ```
18
+
19
+ To run the model directly with LocalAI:
20
+ ```
21
+ local-ai run huggingface://fakezeta/Yi-1.5-9B-Chat-ov-int8/model.yaml
22
+ ```
23
+
24
+ <div align="center">
25
+
26
+ <picture>
27
+ <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px">
28
+ </picture>
29
+
30
+ </div>
31
+
32
+ <p align="center">
33
+ <a href="https://github.com/01-ai">🐙 GitHub</a> •
34
+ <a href="https://discord.gg/hYUwWddeAu">👾 Discord</a> •
35
+ <a href="https://twitter.com/01ai_yi">🐤 Twitter</a> •
36
+ <a href="https://github.com/01-ai/Yi-1.5/issues/2">💬 WeChat</a>
37
+ <br/>
38
+ <a href="https://arxiv.org/abs/2403.04652">📝 Paper</a> •
39
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">🙌 FAQ</a> •
40
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">📗 Learning Hub</a>
41
+ </p>
42
+
43
+ # Intro
44
+
45
+ Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples.
46
+
47
+ Compared with Yi, Yi-1.5 delivers stronger performance in coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension.
48
+
49
+ <div align="center">
50
+
51
+ Model | Context Length | Pre-trained Tokens
52
+ | :------------: | :------------: | :------------: |
53
+ | Yi-1.5 | 4K | 3.6T
54
+
55
+ </div>
56
+
57
+ # Models
58
+
59
+ - Chat models
60
+
61
+ <div align="center">
62
+
63
+ | Name | Download |
64
+ | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
65
+ | Yi-1.5-34B-Chat | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) |
66
+ | Yi-1.5-9B-Chat | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) |
67
+ | Yi-1.5-6B-Chat | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) |
68
+
69
+ </div>
70
+
71
+ - Base models
72
+
73
+ <div align="center">
74
+
75
+ | Name | Download |
76
+ | ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
77
+ | Yi-1.5-34B | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) |
78
+ | Yi-1.5-9B | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) |
79
+ | Yi-1.5-6B | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) |
80
+
81
+ </div>
82
+
83
+ # Benchmarks
84
+
85
+ - Chat models
86
+
87
+ Yi-1.5-34B-Chat is on par with or excels beyond larger models in most benchmarks.
88
+
89
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/KcsJ9Oc1VnEmfCDEJc5cd.png)
90
+
91
+ Yi-1.5-9B-Chat is the top performer among similarly sized open-source models.
92
+
93
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/xf6pLg5jqRCwjlh6m3t6_.png)
94
+
95
+ - Base models
96
+
97
+ Yi-1.5-34B is on par with or excels beyond larger models in some benchmarks.
98
+
99
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/BwU7QM-03dZvZzwdIE1xY.png)
100
+
101
+ Yi-1.5-9B is the top performer among similarly sized open-source models.
102
+
103
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/y-EYSYPT-3aWLJ0x8R94F.png)
104
+
105
+ # Quick Start
106
+
107
+ For getting up and running with Yi-1.5 models quickly, see [README](https://github.com/01-ai/Yi-1.5).
108
+
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "01-ai/Yi-1.5-9B-Chat",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 48,
18
+ "num_key_value_heads": 4,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 5000000.0,
24
+ "tie_word_embeddings": false,
25
+ "transformers_version": "4.40.1",
26
+ "use_cache": false,
27
+ "vocab_size": 64000
28
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.40.1"
7
+ }
model.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ name: Yi-9B
2
+ backend: transformers
3
+ parameters:
4
+ model: fakezeta/Yi-1.5-9B-Chat-ov-int8
5
+ context_size: 8192
6
+ type: OVModelForCausalLM
7
+ template:
8
+ use_tokenizer_template: true
9
+
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c320ff99c034fa1605dcc6934610e2e8c6ef1a3a97f5b57875fa569b35cb2280
3
+ size 1033105
openvino_detokenizer.xml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_284448" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_284448">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Constant_284428" type="Const" version="opset1">
14
+ <data element_type="u8" shape="1033105" offset="0" size="1033105" />
15
+ <output>
16
+ <port id="0" precision="U8">
17
+ <dim>1033105</dim>
18
+ </port>
19
+ </output>
20
+ </layer>
21
+ <layer id="2" name="Convert_284458" type="Convert" version="opset1">
22
+ <data destination_type="i32" />
23
+ <input>
24
+ <port id="0" precision="I64">
25
+ <dim>-1</dim>
26
+ <dim>-1</dim>
27
+ </port>
28
+ </input>
29
+ <output>
30
+ <port id="1" precision="I32">
31
+ <dim>-1</dim>
32
+ <dim>-1</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="SentencepieceDetokenizer_284449" type="SentencepieceDetokenizer" version="extension">
37
+ <input>
38
+ <port id="0" precision="U8">
39
+ <dim>1033105</dim>
40
+ </port>
41
+ <port id="1" precision="I32">
42
+ <dim>-1</dim>
43
+ <dim>-1</dim>
44
+ </port>
45
+ </input>
46
+ <output>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="I32">
51
+ <dim>-1</dim>
52
+ </port>
53
+ <port id="4" precision="U8">
54
+ <dim>-1</dim>
55
+ </port>
56
+ </output>
57
+ </layer>
58
+ <layer id="4" name="StringTensorPack_284450" type="StringTensorPack" version="extension">
59
+ <data mode="begins_ends" />
60
+ <input>
61
+ <port id="0" precision="I32">
62
+ <dim>-1</dim>
63
+ </port>
64
+ <port id="1" precision="I32">
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="2" precision="U8">
68
+ <dim>-1</dim>
69
+ </port>
70
+ </input>
71
+ <output>
72
+ <port id="3" precision="STRING" names="string_output">
73
+ <dim>-1</dim>
74
+ </port>
75
+ </output>
76
+ </layer>
77
+ <layer id="5" name="Result_284451" type="Result" version="opset1">
78
+ <input>
79
+ <port id="0" precision="STRING">
80
+ <dim>-1</dim>
81
+ </port>
82
+ </input>
83
+ </layer>
84
+ </layers>
85
+ <edges>
86
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
87
+ <edge from-layer="1" from-port="0" to-layer="3" to-port="0" />
88
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
89
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="0" />
90
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="1" />
91
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="2" />
92
+ <edge from-layer="4" from-port="3" to-layer="5" to-port="0" />
93
+ </edges>
94
+ <rt_info>
95
+ <eos_token_id value="7" />
96
+ </rt_info>
97
+ </net>
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6193da1956433f76c8026268c2161de636f7e8dffc094734350286873d4b9666
3
+ size 8836070960
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b590526b9f8e7330aca4474691fd7aa26870d99fe4bb986d4eaf544b41d2ffce
3
+ size 1033113
openvino_tokenizer.xml ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="string_input" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="string_input">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_284434" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_284428" type="Const" version="opset1">
19
+ <data element_type="u8" shape="1033105" offset="4" size="1033105" />
20
+ <output>
21
+ <port id="0" precision="U8">
22
+ <dim>1033105</dim>
23
+ </port>
24
+ </output>
25
+ </layer>
26
+ <layer id="3" name="SentencepieceTokenizer_284430" type="SentencepieceTokenizer" version="extension">
27
+ <data nbest_size="0" alpha="0" add_bos="false" add_eos="false" reverse="false" />
28
+ <input>
29
+ <port id="0" precision="U8">
30
+ <dim>1033105</dim>
31
+ </port>
32
+ <port id="1" precision="STRING">
33
+ <dim>-1</dim>
34
+ </port>
35
+ </input>
36
+ <output>
37
+ <port id="2" precision="I64">
38
+ <dim>-1</dim>
39
+ <dim>2</dim>
40
+ </port>
41
+ <port id="3" precision="I32">
42
+ <dim>-1</dim>
43
+ </port>
44
+ <port id="4" precision="I64">
45
+ <dim>2</dim>
46
+ </port>
47
+ </output>
48
+ </layer>
49
+ <layer id="4" name="Broadcast_284435" type="Broadcast" version="opset3">
50
+ <data mode="numpy" />
51
+ <input>
52
+ <port id="0" precision="I32" />
53
+ <port id="1" precision="I64">
54
+ <dim>2</dim>
55
+ </port>
56
+ </input>
57
+ <output>
58
+ <port id="2" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ </output>
63
+ </layer>
64
+ <layer id="5" name="Constant_284436" type="Const" version="opset1">
65
+ <data element_type="i32" shape="" offset="1033109" size="4" />
66
+ <output>
67
+ <port id="0" precision="I32" />
68
+ </output>
69
+ </layer>
70
+ <layer id="6" name="ShapeOf_284437" type="ShapeOf" version="opset3">
71
+ <data output_type="i64" />
72
+ <input>
73
+ <port id="0" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ </input>
77
+ <output>
78
+ <port id="1" precision="I64">
79
+ <dim>1</dim>
80
+ </port>
81
+ </output>
82
+ </layer>
83
+ <layer id="7" name="Broadcast_284438" type="Broadcast" version="opset3">
84
+ <data mode="numpy" />
85
+ <input>
86
+ <port id="0" precision="I32" />
87
+ <port id="1" precision="I64">
88
+ <dim>1</dim>
89
+ </port>
90
+ </input>
91
+ <output>
92
+ <port id="2" precision="I32">
93
+ <dim>-1</dim>
94
+ </port>
95
+ </output>
96
+ </layer>
97
+ <layer id="8" name="ScatterNDUpdate_284442" type="ScatterNDUpdate" version="opset4">
98
+ <input>
99
+ <port id="0" precision="I32">
100
+ <dim>-1</dim>
101
+ <dim>-1</dim>
102
+ </port>
103
+ <port id="1" precision="I64">
104
+ <dim>-1</dim>
105
+ <dim>2</dim>
106
+ </port>
107
+ <port id="2" precision="I32">
108
+ <dim>-1</dim>
109
+ </port>
110
+ </input>
111
+ <output>
112
+ <port id="3" precision="I32">
113
+ <dim>-1</dim>
114
+ <dim>-1</dim>
115
+ </port>
116
+ </output>
117
+ </layer>
118
+ <layer id="9" name="ScatterNDUpdate_284442" type="Convert" version="opset1">
119
+ <data destination_type="i64" />
120
+ <input>
121
+ <port id="0" precision="I32">
122
+ <dim>-1</dim>
123
+ <dim>-1</dim>
124
+ </port>
125
+ </input>
126
+ <output>
127
+ <port id="1" precision="I64" names="attention_mask">
128
+ <dim>-1</dim>
129
+ <dim>-1</dim>
130
+ </port>
131
+ </output>
132
+ </layer>
133
+ <layer id="11" name="Constant_284431" type="Const" version="opset1">
134
+ <data element_type="i32" shape="" offset="0" size="4" />
135
+ <output>
136
+ <port id="0" precision="I32" />
137
+ </output>
138
+ </layer>
139
+ <layer id="12" name="Broadcast_284432" type="Broadcast" version="opset3">
140
+ <data mode="numpy" />
141
+ <input>
142
+ <port id="0" precision="I32" />
143
+ <port id="1" precision="I64">
144
+ <dim>2</dim>
145
+ </port>
146
+ </input>
147
+ <output>
148
+ <port id="2" precision="I32">
149
+ <dim>-1</dim>
150
+ <dim>-1</dim>
151
+ </port>
152
+ </output>
153
+ </layer>
154
+ <layer id="13" name="ScatterNDUpdate_284433" type="ScatterNDUpdate" version="opset4">
155
+ <input>
156
+ <port id="0" precision="I32">
157
+ <dim>-1</dim>
158
+ <dim>-1</dim>
159
+ </port>
160
+ <port id="1" precision="I64">
161
+ <dim>-1</dim>
162
+ <dim>2</dim>
163
+ </port>
164
+ <port id="2" precision="I32">
165
+ <dim>-1</dim>
166
+ </port>
167
+ </input>
168
+ <output>
169
+ <port id="3" precision="I32">
170
+ <dim>-1</dim>
171
+ <dim>-1</dim>
172
+ </port>
173
+ </output>
174
+ </layer>
175
+ <layer id="14" name="ScatterNDUpdate_284433" type="Convert" version="opset1">
176
+ <data destination_type="i64" />
177
+ <input>
178
+ <port id="0" precision="I32">
179
+ <dim>-1</dim>
180
+ <dim>-1</dim>
181
+ </port>
182
+ </input>
183
+ <output>
184
+ <port id="1" precision="I64" names="input_ids">
185
+ <dim>-1</dim>
186
+ <dim>-1</dim>
187
+ </port>
188
+ </output>
189
+ </layer>
190
+ <layer id="15" name="Result_284443" type="Result" version="opset1">
191
+ <input>
192
+ <port id="0" precision="I64">
193
+ <dim>-1</dim>
194
+ <dim>-1</dim>
195
+ </port>
196
+ </input>
197
+ </layer>
198
+ <layer id="10" name="Result_284444" type="Result" version="opset1">
199
+ <input>
200
+ <port id="0" precision="I64">
201
+ <dim>-1</dim>
202
+ <dim>-1</dim>
203
+ </port>
204
+ </input>
205
+ </layer>
206
+ </layers>
207
+ <edges>
208
+ <edge from-layer="0" from-port="0" to-layer="3" to-port="1" />
209
+ <edge from-layer="1" from-port="0" to-layer="4" to-port="0" />
210
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
211
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="1" />
212
+ <edge from-layer="3" from-port="3" to-layer="6" to-port="0" />
213
+ <edge from-layer="3" from-port="2" to-layer="8" to-port="1" />
214
+ <edge from-layer="3" from-port="3" to-layer="13" to-port="2" />
215
+ <edge from-layer="3" from-port="2" to-layer="13" to-port="1" />
216
+ <edge from-layer="3" from-port="4" to-layer="12" to-port="1" />
217
+ <edge from-layer="4" from-port="2" to-layer="8" to-port="0" />
218
+ <edge from-layer="5" from-port="0" to-layer="7" to-port="0" />
219
+ <edge from-layer="6" from-port="1" to-layer="7" to-port="1" />
220
+ <edge from-layer="7" from-port="2" to-layer="8" to-port="2" />
221
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
222
+ <edge from-layer="9" from-port="1" to-layer="10" to-port="0" />
223
+ <edge from-layer="11" from-port="0" to-layer="12" to-port="0" />
224
+ <edge from-layer="12" from-port="2" to-layer="13" to-port="0" />
225
+ <edge from-layer="13" from-port="3" to-layer="14" to-port="0" />
226
+ <edge from-layer="14" from-port="1" to-layer="15" to-port="0" />
227
+ </edges>
228
+ <rt_info>
229
+ <eos_token_id value="7" />
230
+ </rt_info>
231
+ </net>
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
3
+ size 1033105
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|startoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "7": {
31
+ "content": "<|im_end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ }
38
+ },
39
+ "bos_token": "<|startoftext|>",
40
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\\n' + content + '<|im_end|>\\n<|im_start|>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\\n' }}{% endif %}{% endfor %}",
41
+ "clean_up_tokenization_spaces": false,
42
+ "eos_token": "<|im_end|>",
43
+ "legacy": true,
44
+ "model_max_length": 4096,
45
+ "pad_token": "<unk>",
46
+ "padding_side": "right",
47
+ "sp_model_kwargs": {},
48
+ "spaces_between_special_tokens": false,
49
+ "split_special_tokens": false,
50
+ "tokenizer_class": "LlamaTokenizer",
51
+ "unk_token": "<unk>",
52
+ "use_default_system_prompt": false
53
+ }