Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: unsloth/llama-3-8B
|
| 3 |
+
library_name: peft
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- text-to-sql
|
| 7 |
+
- dpo
|
| 8 |
+
- lora
|
| 9 |
+
- transformers
|
| 10 |
+
- trl
|
| 11 |
+
- sql-generation
|
| 12 |
+
- database
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Text-to-SQL DPO Model
|
| 16 |
+
|
| 17 |
+
A Direct Preference Optimization (DPO) fine-tuned LLaMA-3-8B model specialized for text-to-SQL generation tasks. This model has been trained using LoRA (Low-Rank Adaptation) for efficient parameter-efficient fine-tuning.
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
### Model Description
|
| 22 |
+
|
| 23 |
+
This model is a fine-tuned version of LLaMA-3-8B using Direct Preference Optimization (DPO) specifically for text-to-SQL tasks. It has been trained on preference pairs to generate accurate SQL queries from natural language descriptions.
|
| 24 |
+
|
| 25 |
+
- **Developed by:** faizack
|
| 26 |
+
- **Model type:** Causal Language Model with LoRA adapter
|
| 27 |
+
- **Language(s) (NLP):** English
|
| 28 |
+
- **License:** Apache 2.0 (inherited from base model)
|
| 29 |
+
- **Finetuned from model:** unsloth/llama-3-8B
|
| 30 |
+
|
| 31 |
+
### Model Sources
|
| 32 |
+
|
| 33 |
+
- **Repository:** [Text-to-SQL DPO Repository](https://github.com/IDEAS-Incubator/text-to-sql_DPO)
|
| 34 |
+
- **Base Model:** [unsloth/llama-3-8B](https://huggingface.co/unsloth/llama-3-8B)
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
### Direct Use
|
| 39 |
+
|
| 40 |
+
This model is designed for generating SQL queries from natural language descriptions. It can be used for:
|
| 41 |
+
|
| 42 |
+
- Converting natural language questions to SQL queries
|
| 43 |
+
- Database query generation
|
| 44 |
+
- Text-to-SQL applications
|
| 45 |
+
- Database interaction interfaces
|
| 46 |
+
|
| 47 |
+
### Example Usage
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 51 |
+
from peft import PeftModel
|
| 52 |
+
import torch
|
| 53 |
+
|
| 54 |
+
# Load the base model and tokenizer
|
| 55 |
+
base_model = "unsloth/llama-3-8B"
|
| 56 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 57 |
+
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16)
|
| 58 |
+
|
| 59 |
+
# Load the LoRA adapter
|
| 60 |
+
model = PeftModel.from_pretrained(model, "faizack/text-to-sql-dpo")
|
| 61 |
+
|
| 62 |
+
# Generate SQL query
|
| 63 |
+
prompt = "Show me all users from the customers table"
|
| 64 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 65 |
+
outputs = model.generate(**inputs, max_length=100)
|
| 66 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 67 |
+
print(response)
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Out-of-Scope Use
|
| 71 |
+
|
| 72 |
+
This model should not be used for:
|
| 73 |
+
- General-purpose text generation beyond SQL queries
|
| 74 |
+
- Generating malicious or harmful SQL queries
|
| 75 |
+
- Database operations without proper validation
|
| 76 |
+
- Production use without proper testing and validation
|
| 77 |
+
|
| 78 |
+
## Bias, Risks, and Limitations
|
| 79 |
+
|
| 80 |
+
### Limitations
|
| 81 |
+
|
| 82 |
+
- The model is specialized for SQL generation and may not perform well on other tasks
|
| 83 |
+
- Generated SQL queries should be validated before execution
|
| 84 |
+
- Performance may vary depending on database schema complexity
|
| 85 |
+
- The model may generate queries that are syntactically correct but logically incorrect
|
| 86 |
+
|
| 87 |
+
### Recommendations
|
| 88 |
+
|
| 89 |
+
- Always validate generated SQL queries before execution
|
| 90 |
+
- Test the model on your specific database schema
|
| 91 |
+
- Use appropriate safety measures when executing generated queries
|
| 92 |
+
- Consider the model's limitations when integrating into production systems
|
| 93 |
+
|
| 94 |
+
## How to Get Started with the Model
|
| 95 |
+
|
| 96 |
+
### Installation
|
| 97 |
+
|
| 98 |
+
```bash
|
| 99 |
+
pip install transformers peft torch
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
### Quick Start
|
| 103 |
+
|
| 104 |
+
```python
|
| 105 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 106 |
+
from peft import PeftModel
|
| 107 |
+
|
| 108 |
+
# Load model and adapter
|
| 109 |
+
base_model = "unsloth/llama-3-8B"
|
| 110 |
+
model = AutoModelForCausalLM.from_pretrained(base_model)
|
| 111 |
+
model = PeftModel.from_pretrained(model, "faizack/text-to-sql-dpo")
|
| 112 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 113 |
+
|
| 114 |
+
# Generate SQL
|
| 115 |
+
prompt = "Find all orders placed in the last 30 days"
|
| 116 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 117 |
+
outputs = model.generate(**inputs, max_length=150, temperature=0.1)
|
| 118 |
+
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 119 |
+
print(sql_query)
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
## Training Details
|
| 123 |
+
|
| 124 |
+
### Training Data
|
| 125 |
+
|
| 126 |
+
The model was trained on the `zerolink/zsql-sqlite-dpo` dataset, which contains preference pairs for text-to-SQL tasks.
|
| 127 |
+
|
| 128 |
+
### Training Procedure
|
| 129 |
+
|
| 130 |
+
#### Training Hyperparameters
|
| 131 |
+
|
| 132 |
+
- **Training regime:** DPO (Direct Preference Optimization)
|
| 133 |
+
- **Epochs:** 6
|
| 134 |
+
- **Batch size:** 2
|
| 135 |
+
- **Gradient accumulation:** 32
|
| 136 |
+
- **Learning rate:** 5e-5
|
| 137 |
+
- **LoRA rank:** 16
|
| 138 |
+
- **LoRA alpha:** 16
|
| 139 |
+
- **LoRA dropout:** 0.05
|
| 140 |
+
- **Target modules:** q_proj, v_proj
|
| 141 |
+
|
| 142 |
+
#### Training Infrastructure
|
| 143 |
+
|
| 144 |
+
- **Base model:** unsloth/llama-3-8B
|
| 145 |
+
- **Framework:** PEFT (Parameter-Efficient Fine-Tuning)
|
| 146 |
+
- **Training method:** LoRA (Low-Rank Adaptation)
|
| 147 |
+
- **Total steps:** 120
|
| 148 |
+
- **Steps per epoch:** 3660
|
| 149 |
+
|
| 150 |
+
## Technical Specifications
|
| 151 |
+
|
| 152 |
+
### Model Architecture
|
| 153 |
+
|
| 154 |
+
- **Base architecture:** LLaMA-3-8B
|
| 155 |
+
- **Adapter type:** LoRA
|
| 156 |
+
- **Trainable parameters:** ~16M (LoRA adapter only)
|
| 157 |
+
- **Total parameters:** ~8B (base model + adapter)
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
- **Hardware:** GPU-based training
|
| 162 |
+
- **Framework versions:**
|
| 163 |
+
- PEFT: 0.17.1
|
| 164 |
+
- Transformers: 4.56.2
|
| 165 |
+
- PyTorch: Compatible with CUDA
|
| 166 |
+
|
| 167 |
+
## Citation
|
| 168 |
+
|
| 169 |
+
If you use this model in your research, please cite:
|
| 170 |
+
|
| 171 |
+
```bibtex
|
| 172 |
+
@misc{text-to-sql-dpo-2024,
|
| 173 |
+
title={Text-to-SQL DPO Model},
|
| 174 |
+
author={faizack},
|
| 175 |
+
year={2024},
|
| 176 |
+
url={https://huggingface.co/faizack/text-to-sql-dpo}
|
| 177 |
+
}
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
## Model Card Contact
|
| 181 |
+
|
| 182 |
+
For questions or issues related to this model, please contact the model author or open an issue in the repository.
|
| 183 |
+
|
| 184 |
+
## Framework versions
|
| 185 |
+
|
| 186 |
+
- PEFT 0.17.1
|
| 187 |
+
- Transformers 4.56.2
|